|
1.王鈺分、謝旻凌、陳建維 (2021 年 7 月) 慢性阻塞性肺病合併肺動脈高壓及右心衰竭患者使用體外膜氧合器之呼吸照護經驗。呼吸治療, 20(2),157–158。 2.台灣慢性阻塞性肺病學會 (2012),台灣慢性阻塞性肺病學會,取自: http://www.tacopd.org.tw/origin/origin_01.asp 讀取日:2021,12,9。 3.台灣胸腔暨重症加護學會 (2017),自在呼吸健康網 | 全台灣第一個呼吸道民眾衛教專業網站,取自: http://www.asthma-copd.tw 讀取日:2022,04,14。 4.吳文傑 (2021 年 8 月) 小心胃食道逆流找上身。消費者報導雜誌, 484,67–70。 5.吳英黛 (2012),社團法人中華民國物理治療師公會全國聯合會,取自: http://www.pt.org.tw/pt_news_detail.php?Bid=8&Id=187 讀取日:2021,12,9。 6.何瑛曌 (2021 年 7 月) 防疫保「胃」戰,在家如何舒緩胃食道逆流。彰基院訊, 38(7),10–11。 7.林哲暐、李兆殷、吳宗樺、吳皓瑋、葉家成、楊雅雯、侯家鼎 (2006),慢性阻塞性肺部疾病醫療資源耗用之研究-以全民健保資料庫為例,取自: https://nhird.nhri.org.tw/talk_05_abs_305 讀取日:2021,12,9。 8.陳家弘 (2018),慢性阻塞性肺病APP 掌握病情最及時 | 醫療新聞,中國醫藥大學附設醫院,取自: http://www.cmuh.cmu.edu.tw/NewsInfo/NewsArticle?no=4231 讀取日:2022,01,12。 9.黃家微、嚴麗君、劉嘉恩 (2021 年 7 月)。 一位獨居慢性阻塞性肺病病人之護理經驗。若瑟醫護雜誌, 15(1),107–117。 10.董宥汝、羅景全 (2017 年 1 月)。 非侵蝕性食道逆流疾病。臨床醫學, 79(1),32–38。 11.臺北榮民總醫院胸腔部 (2016),臺北榮民總醫院胸腔部,取自: https://wd.vghtpe.gov.tw/cmd/Fpage.action?muid=3031&fid=6460 讀取日:2021,12,9。 12.衛生福利部國民健康署 (2016),衛生福利部國民健康署,取自: https://www.hpa.gov.tw/Pages/List.aspx?nodeid=41 讀取日:2021,12,9。 13.戴有志、王薏婷、黃慧君 (2009 年 12 月 1 日)。 慢性阻塞性肺病。北台灣中醫醫學雜誌, 1(2),78–¬¬86。 14.嚴助成、張維國、謝財源 (2005 年 12 月)。 胃食道逆流疾病的認識與治療。臺灣臨床藥學雜誌, 13(2),55–62。 15.Ajmera, M., Raval, A. D., Shen, C., & Sambamoorthi, U. (2014). Explaining the increased health care expenditures associated with gastroesophageal reflux disease among elderly Medicare beneficiaries with chronic obstructive pulmonary disease: A cost-decomposition analysis. International Journal of Chronic Obstructive Pulmonary Disease, 9. 16.Antunes C., Aleem A., & Curtis S. A. (2021). Gastroesophageal Reflux Disease. StatPearls [Internet]. StatPearls Publishing, available at https://www.ncbi.nlm.nih.gov/books/NBK441938/ retrieved Frbruary 26, 2022. 17.Ardelean, S. M., & Udrescu, M. (2022). Graph coloring using the reduced quantum genetic algorithm. Peer Journal Computer Science. 18.Boeree, M. J., Peters, F. T. M., Postma, D. S., & Kleibeuker, J. H. (1998). No effects of high-dose omeprazole in patients with severe airway hyperresponsiveness and (a)symptomatic gastro-oesophageal reflux. European Respiratory Journal, 11(5), 1070–1074. 19.Bor, S., Kitapcioglu, G., Solak, Z. A., Ertilav, M., & Erdinc, M. (2010). Prevalence of gastroesophageal reflux disease in patients with asthma and chronic obstructive pulmonary disease. Journal of Gastroenterology and Hepatology, 25(2), 309–313. 20.Casanova, C., Baudet, J. S., del Valle Velasco, M., Martin, J. M., Aguirre-Jaime, A., Pablo de Torres, J., & Celli, B. R. . (2004). Increased gastro-oesophageal reflux disease in patients with severe COPD. European Respiratory Journal, 23(6), 841–845. 21.Chen, Y. (2021). Business English Translation Model Based on BP Neural Network Optimized by Genetic Algorithm. Computational Intelligence and Neuroscience. 22.Cleveland Clinic. (2019). GERD (Chronic Acid Reflux): Symptoms, Treatment, & Causes. Cleveland Clinic, available at https://my.clevelandclinic.org/health/diseases/17019-gerd-or-acid-reflux-or-heartburn-overview retrieved Frbruary 26, 2022. 23.Felson S. (2021). COPD (Chronic Obstructive Pulmonary Disease). WebMD, available at https://www.webmd.com/lung/copd/10-faqs-about-living-with-copd retrieved January 18,2022. 24.Guerrero, J. I., Miró-Amarante, G., & Martín, A. (2022). Decision support system in health care building design based on case-based reasoning and reinforcement learning. Expert Systems with Applications, 187. 25.Han, M.-Z., Hsiue, T.-R., Tsai, S.-H., Huang, T.-H., Liao, X.-M., & Chen, C.-Z. (2018). Validation of the GOLD 2017 and new 16 subgroups (1A–4D) classifications in predicting exacerbation and mortality in COPD patients. International Journal of Chronic Obstructive Pulmonary Disease, Volume 13, 3425–3433. 26.Hillas, G., Perlikos, F., Tsiligianni, I., & Tzanakis, N. (2015). Managing comorbidities in COPD. International Journal of Chronic Obstructive Pulmonary Disease, 10, 95–109. 27.Huang, C., Liu, Y., & Shi, G. (2020). A systematic review with meta-analysis of gastroesophageal reflux disease and exacerbations of chronic obstructive pulmonary disease. BMC Pulmonary Medicine, 20, 2. 28.Iwakiri, K., Fujiwara, Y., Manabe, N., Ihara, E., Kuribayashi, S., Akiyama, J., Kondo, T.,et al. (2022). Evidence-based clinical practice guidelines for gastroesophageal reflux disease 2021. Journal of Gastroenterology, 57(4), 267–285. 29.Khosravanian, R., & Aadnøy, B. S. (2022). Chapter Twelve—Case-based reasoning (CBR) in digital well planning and construction. R. Khosravanian & B. S. Aadnøy, Methods for Petroleum Well Optimization pp.477–521. Gulf Professional Publishing , available at https://www.sciencedirect.com/science/article/pii/B9780323902311000030 retrieved April 13,2022. 30.Kostadinov S. (2019). Understanding Backpropagation Algorithm. Medium, available at https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd retrieved March 8,2022. 31.Lambora, A., Gupta, K., & Chopra, K. (2019). Genetic Algorithm- A Literature Review. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon),pp.380–384. 32.Lee, J., Jung, H. M., Kim, S. K., Yoo, K. H., Jung, K.-S., Lee, S. H., & Rhee, C. K. (2019). Factors associated with chronic obstructive pulmonary disease exacerbation, based on big data analysis. Scientific Reports. 33.Liu, T., & Zou, G.(2021). Evaluation of Mechanical Properties of Materials Based on Genetic Algorithm Optimizing BP Neural Network. Computational Intelligence and Neuroscience, 2021. 34.Mokhlesi, B., Morris, A. L., Huang, C.-F., Curcio, A. J., Barrett, T. A., & Kamp, D. W. (2001). Increased Prevalence of Gastroesophageal Reflux Symptoms in Patients With COPD. Chest, 119(4), 1043–1048. 35.Moradi, S., Tapak, L., & Afshar, S. (2022). Identification of Novel Noninvasive Diagnostics Biomarkers in the Parkinson’s Diseases and Improving the Disease Classification Using Support Vector Machine. BioMed Research Internationa. 36.National Heart, Lung, and Blood Institute. (2022). COPD. Text, National Library of Medicine, available at https://medlineplus.gov/copd.html retrieved January 10,2022. 37.Niemeyer, J. F., Rudolf, S., Kvaratskhelia, L., Mennenga, M., & Herrmann, C. (2022). A creativity-driven Case-Based Reasoning Approach for the systematic Engineering of Sustainable Business Models. Procedia CIRP, The 29th CIRP Conference on Life Cycle Engineering, April 4 – 6, 2022, Leuven, Belgium., 105, 470–475. 38.Nonlinear Support Vector Machine—An overview | ScienceDirect Topics. (2022), available at https://www.sciencedirect.com/topics/engineering/nonlinear-support-vector-machine retrieved April 16,2022 39.Pace, F., Santilano, A., & Godio, A. (2021). A Review of Geophysical Modeling Based on Particle Swarm Optimization. Surveys in Geophysics, 42(3), 505–549. 40.Piotrowski, A. P., & Piotrowska, A. E. (2021). Differential evolution and particle swarm optimization against COVID-19. Artificial Intelligence Review, pp.1–71. 41.Popescu, V.-B., Kanhaiya, K., Năstac, D. I., Czeizler, E., & Petre, I. (2022). Network controllability solutions for computational drug repurposing using genetic algorithms. Scientific Reports. 42.Putcha, N., Drummond, M. B., Wise, R. A., & Hansel, N. N. (2015). Comorbidities and Chronic Obstructive Pulmonary Disease: Prevalence, Influence on Outcomes, and Management. Seminars in respiratory and critical care medicine, 36(4), 575–591. 43.Quan, Z., Yan, G., Wang, Z., Li, Y., Zhang, J., Yang, T., & Piao, H. (2021). Current status and preventive strategies of chronic obstructive pulmonary disease in China: A literature review. Journal of Thoracic Disease, 13(6), 3865–3877. 44.Riesco Miranda, J. A., Marca-Frances, G., & Jimenez-Ruiz, C. A. (2018). Perception and Awareness of Chronic Obstructive Pulmonary Disease, Chronic Bronchitis and Pulmonary Emphysema in the Spanish Urban Population. Archivos de Bronconeumología (English Edition), 54(6), 352–353. 45.Salman, I. (2018). Impact of Metaheuristic Iteration on Artificial Neural Network Structure in Medical Data. Processes, 6, available at https://www.mdpi.com/2227-9717/6/5/57 retrieved April 16,2022 46.Spindelböck, T., Ranftl, S., & von der Linden, W. (2021). Cross-Entropy Learning for Aortic Pathology Classification of Artificial Multi-Sensor Impedance Cardiography Signals. Entropy, 23(12), 1661. 47.Spirometry.guru. (2022). Reversibility, available at https://www.spirometry.guru/reversibility.html retrieved April 15,2022 48.Sweis, R., & Fox, M. (2020). The global burden of gastro-oesophageal reflux disease: More than just heartburn and regurgitation. The Lancet Gastroenterology & Hepatology, 5(6), 519–521. 49.Takada, K., Matsumoto, S., Kojima, E., Iwata, S., Okachi, S., Ninomiya, K., Morioka, H.et al. (2011). Prospective evaluation of the relationship between acute exacerbations of COPD and gastroesophageal reflux disease diagnosed by questionnaire. Respiratory Medicine, 105(10), 1531–1536. 50.Tapak, L., Afshar, S., Afrasiabi, M., Ghasemi, M. K., & Alirezaei, P. (2021). Application of Genetic Algorithm-Based Support Vector Machine in Identification of Gene Expression Signatures for Psoriasis Classification: A Hybrid Model. BioMed Research Internationa, 2021. 51.Tsai, C.-L., Lin, Y.-H., Wang, M.-T., Chien, L.-N., Jeng, C., Chian, C.-F., Perng, W.-C.et al. (2015). Gastro-oesophageal reflux disease increases the risk of intensive care unit admittance and mechanical ventilation use among patients with chronic obstructive pulmonary disease: A nationwide population-based cohort study. Critical Care, 19(1), 110. 52.Wang, K., Yang, Y., Reniers, G., Li, J., & Huang, Q. (2022). Predicting the spatial distribution of direct economic losses from typhoon storm surge disasters using case-based reasoning. International Journal of Disaster Risk Reduction. 53.Wang, K.-F., An, J., Wei, Z., Cui, C., Ma, X.-H., Ma, C., & Bao, H.-Q. (2022). Deep Learning-Based Imbalanced Classification With Fuzzy Support Vector Machine. Frontiers in Bioengineering and Biotechnology. 54.Wang, Y.-J., Lang, X.-Q., Wu, D., He, Y.-Q., Lan, C.-H., Xiao-Xiao, Wang, B.et al. (2020). Salivary Pepsin as an Intrinsic Marker for Diagnosis of Sub-types of Gastroesophageal Reflux Disease and Gastroesophageal Reflux Disease-related Disorders. Journal of Neurogastroenterology and Motility, 26(1), 74–84. 55.World Health Organization (2020a), NCD Country Capacity Survey, available at https://www.who.int/teams/ncds/surveillance/monitoring-capacity/ncdccs retrieved December 09, 2021 56.World Health Organization (2020b).The top 10 causes of death, available at https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death retrieved December 09, 2021 57.World Health Organization (2021).Chronic obstructive pulmonary disease (COPD), available at https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd) retrieved December 09, 2021 58.Wu, M.-T. (2022). Confusion matrix and minimum cross-entropy metrics based motion recognition system in the classroom. Scientific Reports, 12, 3095. 59.Xie, Z., Huang, X., & Liu, W. (2022). Subpopulation Particle Swarm Optimization with a Hybrid Mutation Strategy. Computational Intelligence and Neuroscience, 2022. 60.Yeung, M., Sala, E., Schönlieb, C.-B., & Rundo, L. (2022). Unified Focal loss: Generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation. Computerized Medical Imaging and Graphics, 95. 61.Yu, H., & Wang, T. (2021). A Method for Real-Time Fault Detection of Liquid Rocket Engine Based on Adaptive Genetic Algorithm Optimizing Back Propagation Neural Network. Sensors (Basel, Switzerland), 21(15), 5026. 62.Zhu, W., Song, Y., & Xiao, Y. (2020). Support vector machine classifier with huberized pinball loss. Engineering Applications of Artificial Intelligence, 36(5), 984-997.
|