[1]百度百科,丙二醇甲醚醋酸酯。
https://baike.baidu.com/item/丙二醇甲醚醋酸酯
[2]行政院環境保護署環署,放流水標準,2004,水字第1030005842號令。
[3]The dow chemical company, Safety data sheet, (2015) 1–11.
[4]C. Ye, X. Dong, W. Zhu, D. Cai, T. Qiu, Isobaric vapor-liquid equilibria of the binary mixtures propylene glycol methyl ether + propylene glycol methyl ether acetate, methyl acetate + propylene glycol methyl ether and methanol + propylene glycol methyl ether acetate at 101.3kPa, Fluid Phase Equilib 367 (2014) 45-50.
[5]三福化工股份有限公司,丙二醇甲醚醋酸酯。
[6]台灣陶氏化學股份有限公司,丙二醇甲醚醋酸酯。
[7]翁廷,廢水處理單元最適化操作模式,中央大學永續環境科技研究中心。
[8]司洪濤、呂冠霖、黃香玫,氧化技術在高濃度COD廢水處理之應用,台灣大學,2008,1-23。
[9]N. Ertugay, F. N.Acar, Removal of COD and color from direct blue 71 azo dye wastewater by Fenton’s oxidation : kinetic study, Arab. J. Chem., (2013), 1158-1163.
[10]X. Xie, N. Liu, F.Yang, Q. Zhang, X. Zheng, Y. Wang, Ecotoxicology and environmental safety comparative study of antiestrogenic activity of two dyes after Fenton oxidation and biological degradation, Ecotoxicol. Environ. Saf., 164, (2018) 416-424.
[11]D. Gamaralalage, O. Sawai, T. Nunoura, Degradation behavior of palm oil mill effluent in Fenton oxidation, J. Hazard. Mater., 364, (2018) 791-799.
[12]A. Gupta, A. Garg, Degradation of ciprofloxacin using Fenton's oxidation: effect of operating parameters, identification of oxidized by-products and toxicity assessment, ECSN, 193, (2017) 1181-1188.
[13]W. O. Medjor, O. N. Namessan, E. Adebowale, Optimization, kinetics , hysicochemical and ecotoxicity studies of Fenton oxidative remediation of hydrocarbons contaminated groundwater, Egypt. J. Pet., 27 (2017) 227-233.
[14]R. Saini, C. V. Raghunath, P. Pandey, P. Kumar, Optimization of Fenton oxidation for the removal of methyl parathion in aqueous solution, Perspect. Sci., 8, (2016) 670-672.
[15]C. S. D. Rodrigues, R. A. C. Borges, V. N. Lima, L. M. Madeira, p-Nitrophenol degradation by Fenton’s oxidation in a bubble column reactor, J. Environ. Manage., 206, (2018) 774-785.
[16]L. F. Guerreiro, C. S. D.Rodrigues, R. M. Duda, R. A. DeOliveira, R. A. R. Boaventura, L. M. Madeira, Treatment of sugarcane vinasse by combination of coagulation / flocculation and Fenton’s oxidation, 181, (2016) 237-248.
[17]J. Bolobajev, A. Goi, Sonolytic degradation of chlorophene enhanced by Fenton-mediated oxidation and H• -scavenging effect, Chem. Eng. J., 328 (2017) 904-914.
[18]A. E. Gomezherrero, M. Tobajas, A. Polo, J. J. Rodriguez, A. F. Mohedano, Removal of imidazolium-based ionic liquid by coupling Fenton and biological oxidation, J. Hazard. Mater., 365 (2018) 289-296.
[19]翁瑞,環境材科學,清華大學。
https://books.google.com.tw/books?id=IChHGvr-O1wC&pg=PA214&lpg=PA214&dq=%E7%A9%BA%E6%B0%A3%E6%B0%A7%E5%8C%96%E6%B3%95&source=bl&ots=L2Cs_hUsjE&sig=JDOWNOFC5iuro_OrLQ4a3kXtIw4&hl=zh-TW&sa=X&ved=2ahUKEwiWw5L-rZ7fAhXHu7wKHfK8Ch04ChDoATAAegQICRAB#v=onepage&q&f=false.
[20]A. Paula, L. Cardozo, D. Cruz, T. Karoliny, J. Carla, C. Regina Combined processes of ozonation and supercritical water oxidation for landfill leachate degradation, Waste Manag., 77 (2018) 466-476.
[21]K. Kruanak, C. Jarusutthirak, Degradation of 2,4,6-trichlorophenol in synthetic wastewater by catalytic ozonation using alumina supported nickel oxides, Biochem. Pharmacol., 7 (2018) 102825.
[22]A. Marco, T. Valeria, F. Antonio, A. Patti, A. Lancia, UV treatment for the removal of bromate formed during ozonation of groundwater. Influence of the oxidation process on the removal, Biochem. Pharmacol., 4 (2016) 3293-3302.
[23]C. Sa, M. A. Rodrigo, P. Ca, Costs of the electrochemical oxidation of wastewaters : A comparison with ozonation and Fenton oxidation processes, 90 (2009) 410-420.
[24]D. Rajkumar, K. Palanivelu, Kinetics, cataltsis, and reaction engimeering electrochemical degradation of cresols for wastewater treatment, 42 (2003)1833-1839.
[25]B. D. Rajkumar, J. G. Kim, K. Palanivelu, Indirect electrochemical oxidation of phenol in the presence of chloride for wastewater treatment, 1 (2005) 98-105.
[26]L. Szpyrkowicz, C. Juzzolino, S. N. Kaul, A comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and fenton reagent, 35 (2001) 2129-2136.
[27]J. R. Parga, S. S. Shukla, F. R. Carrillopedroza, Destruction of cyanide waste solutions using chlorine dioxide,ozone and titania sol, 23 (2003)183-191.
[28]J. R. Parga, L. David, Oxidation of cyanide in a hydrocyclone reactor by chlorine dioxide, 140 (2001) 289-296.
[29]H. Uzun, D. Kim, T. Karanfil, Removal of wastewater and polymer derived N-nitrosodimethylamine precursors with integrated use of chlorine and chlorine dioxide, ECSN, 216 (2018) 224-233.
[30]Q. Wu, Y. Li, W. Wang, T. Wang, H. Hu, Removal of C.I. Reactive Red 2 by low pressure UV/chlorine advanced oxidation, JES, 41 (2015) 1-8.
[31]K. Paździor, L. Bilińska, S. Ledakowicz, A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment, Chem. Eng. J., 182 (2018) 351-366.
[32]S. İ, F. Karaer, Removal of acute toxicity with ozonation in textile plant waste water, J. BIOL. ENVIRON. SCI., 7 (2013)1-8.
[33]G. Eremektar, H. Selcuk, S. Meric, The effect of pre-ozone oxidation on acute toxicity and inert soluble COD fractions of a textile finishing industry wastewater, Journal of Hazardous Materials, 137 (2006) 254-260.
[34]G. Siracusa, S. Becarelli, Q. Yuan, COD removal from biologically stabilized landfill leachate using advanced oxidation processes (AOPs), Process Safety and Environmental Protection, 120 (2018) 278-285.
[35]J. A. Khan, X. He, N. S. Shah, M. Sayed, H. M. Khan, D. D. Dionysiou, Degradation kinetics and mechanism of desethyl-atrazine and desisopropyl-atrazine in water with • OH and SO4•− based-AOPs, Chem. Eng. J., 325 (2017) 485-494.
[36]S. R. I. International, R. Avenue, M. Park, Rate constants for direct reactions of ozone with several drinking water contaminants, Water Res, 25 (1991) 761-773.
[37]C. C. D. Yao, W. R. Haag, Rate constants for reaction of hydroxyl radicals with several drinking water contaminants, Environ. Sci. Technol, 26 (1992) 1005-1013.
[38]W. A. Cheema, H. R. Andersen, K. M. S. Kaarsholm, Improved DBP elimination from swimming pool water by continuous combined UV and ozone treatment, Water Res., 147 (2018) 214-222.
[39]P. Taylor, L. Mansouri, L. Bousselmi, Desalination and water treatment degradation of diethyl phthalate ( DEP ) in aqueous solution using TiO2 / UV process using TiO2 / UV process, Desalination and water treatment, 40 (2012) 37-41.
[40]B. Xu, N. Gao, S. Xia, M. Rui M. Simimmot, C. Causserand, J. Zhao, Photochemical degradation of diethyl phthalate with UV / H2O2, 139 (2007) 132-139.
[41]G. Yang, X. Zhao, X. Sun, X. Lu, Oxidative degradation of diethyl phthalate by photochemically-enhanced Fenton reaction, 126 (2005) 112-118.
[42]H. Wang, X. Li, Z. Hao, Y. Sun, Y. Wang, W, Li Y, Tsang, Transformation of dissolved organic matter in concentrated leachate from nano filtration during ozone-based oxidation processes ( O3,O3 / H2O2 and O3 / UV ), J. Environ. Manage., 191 (2017) 244-251.
[43]X. Yuan, S. Lacorte, J. Cristale, R. F. Dantas, C. Sans, Removal of organophosphate esters from municipal secondary effluent by ozone and UV / H2O2 treatments, Sep. Purif. Technol., 156 (2015) 1028-1034.
[44]I. Ebrahimi, M. Parvinzadeh, M. Sarafpour, Journal of photochemistry & photobiology a : chemistry photocatalytic discoloration of denim using advanced oxidation process with H2O2 / UV, J. Photochem. Photobiol. A Chem., 360 (2018) 278-288.
[45]W. Huang, C. Chen, Photocatalytic degradation of diethyl phthalate ( DEP ) in water using TiO2, Water Air and Soil Pollution, 207 (2010) 349-355.
[46]I. Gulkaya, G. A. Surucu, F. B. Dilek, Importance of H2O2 / Fe 2+ ratio in Fenton’s treatment of a carpet dyeing wastewater, J. Hazard. Mater., 136 (2006) 763-769.
[47]L. Mansouri, C. Tizaoui, S. Geissen, L. Bousselmi, A comparative study on ozone, hydrogen peroxide and UV based advanced oxidation processes for efficient removal of diethyl phthalate in water, J. Hazard. Mater., 363 (2018) 401-411.
[48]B. Soo, Y. Jung, Y. Jin, Y. Sook, Application of ozone,UV and ozone / UV processes to reduce diethyl phthalate and its estrogenic activity, Sci Total Environ, 367 (2006) 681-693.
[49]吳采芳,「超音波結合芬頓程序處理廢水中難分解有機物: 以化工廠廢水為例」,國立交通大學環境工程研究所,碩士論文,2012,9-12。[50]B. H. J. H.Festos, LXXIII.- Oxidation of tartaric acid in presence of iron, J. Chem. Soc., Trans., 65 (1894) 899-910.
[51]W. H. Koppenol, W. H. Koppenol, Communications in free radical research the haber-weiss cycle-70 years later the haber-weiss cycle- 70 years later, Redox Rep., 2 (2002) 229-234.
[52]M. Lu, J. Chen, C. Chang, Oxidation of dichlorvos with hydrogen peroxide using ferrous ion as catalyst, J. Hazard. Mater., 65 (1999) 277-288.
[53]M. S. Lucas, J. A. Peres, Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation, Dyes and Pigmentsvol., 71 (2006) 236-244.
[54]S. H. Lin , C. H. O. C. Lo, fenton process for treatment of desizing wastewater, Wat. Res. 31 (1997) 2050-2056.
[55]W. G. Kuo, Decolorizing dye wastewater with fenton’s reagent, War. Res., 26 (1992) 881-886.
[56]S. Kang, H. Chang, Coagulation of textile secondary effluents with fenton’s reagent, Water Sci. Technol., 36 (1997) 215-222.
[57]A.Waters, Electron-transfer reactions. the mechanism of oxidation of alcohols with fenton’s reagent., 52 (1947) 179-787.
[58]F. Hydrox, B. J. H. Merz, W. A. Waters, The oxidation of aromatic compounds by means of the free hydroxyl radical, 0 (1949) 2427-2433.
[59]C. Walling, Fenton’s reagent revisited, 8 (1975) 125-131.
[60]E. M. Siedlecka, P.Stepnowski, Phenols degradation by Fenton reaction in the presence of chlorides and sulfates, Polish J. Environ. Stud., 14 (2005) 823-828.
[61]P. Juliya, D. Ranjit, K. Palanivelu, C. Lee, Degradation of 2,4-dichlorophenol in aqueous solution by sono-Fenton method, 25 (2008) 112-117.
[62]P. Ghosh, A. N. Samanta, S. Ray, COD reduction of petrochemical industry wastewater using Fenton’s oxidation, Can. J. Chem. Eng., 88 (2010) 1021-1026.
[63]M. Trapido, T. Tennob, A. Goia, N. Dulovaa, E. Kattela, D. Klausona, K. Kleinb, T. Tennob, M. Viisimaaa, Journal of water process engineering bio-recalcitrant pollutants removal from wastewater with combination of the Fenton treatment and biological
oxidation, J. Water Process Eng., 16 (2017) 277-282.
[64]N. Amaralsilva, R. C. Martins, P. Nunes, S. Castrosilva, M. Rosa, From a lab test to industrial application: Scale-up of Fenton-process for real olive mill wastewater treatment, J Chem Technol Biotechnol, 92 (2017) 1336-1344.
[65]M. S. Lucas, J. A. Peres, Removal of COD from olive mill wastewater by Fenton’s reagent : Kinetic study, 168 (2009) 1253-1259.
[66]R. C. Martins, A. F. Rossi, R. M. Quintaferreira, Fenton’s oxidation process for phenolic wastewater remediation and biodegradability enhancement, J. Hazard. Mater,. 180 (2010) 716-721.
[67]L.Yang, X. Liang, Y. Han, Y. Cai, H. Zhao, M. Sheng, G. Cao, The coupling use of advanced oxidation processes and sequencing batch reactor to reduce nitrification inhibition of industry wastewater : Characterization and optimization, Chem. Eng. J., 360 (2018) 1-10.
[68]L. Lunar, D. Sicilia, S. Rubio, D. Pérez-Bendito, U. Nickel, Degradation of photographic developers by Fenton’s reagent: Condition optimization and kinetics for metol oxidation, Water Res., 34 (2000) 1791-1802.
[69]M. E. Lindsey, M. A. Tarr, Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide, Chemosphere, 41 (2000) 409-417.
[70]N. Kang, D. S. Lee, J. Yoon, Kinetic modeling of Fenton oxidation of phenol and monochlorophenols, Chemophere, 47 (2002) 915-924, 2002.
[71]H.Tekin, O. Bilkay, S. Ataberk T. H. Balta, I. H. Ceribasi, F. Sanin, F. B. Dilek , U. Yetis,Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater, Chem. Eng. J
., 136 (2006) 258-265.
[72]R. He, B. Tian, Q. Zhang, H. Zhang, Effect of Fenton oxidation on biodegradability,biotoxicity and dissolved organic matter distribution of concentrated landfill leachate derived from a membrane process, WASTE Manag., 38 (2015) 232-239.
[73]Z. Wang, K. Chen, J. Li, L. Mo, Q. Wang, The Removal of COD from Bleaching Effluents by Fenton’s Reagent : Effect of System Parameters and Kinetic Study, Environmental Progress & Sustainable Energy, 30 (2011) 168-176.
[74]E. C.Catalkaya andF.Kargi, “Color , TOC and AOX removals from pulp mill effluent by advanced oxidation processes : A comparative study,” vol. 139, pp. 244-253, 2007.
[75]K. Yetilmezsoy, S. Sakar, Improvement of COD and color removal from UASB treated poultry manure wastewater using Fenton’s oxidation, J. Hazard. Mater., 151 (2008) 547-558.
[76]S. Giray, M. H. Morcali, S. Akarsu, C. A. Ziba, M. Dolaz, Comparison of classic Fenton with ultrasound Fenton processes on industrial textile wastewater, Sustain. Environ. Res., 28 (2018) 165-170.
[77]W. Z. Tang, S. Tassos, Oxidation kinetics and mechanisms of trihalomethanes by fenton’s reagent, Water Research, 31 (1997) 1117-1125.
[78]M. R. Sohrabi, A. Khavaran, Removal of carmoisine edible dye by Fenton and photo Fenton processes using Taguchi orthogonal array design, Arab. J. Chem., 10 (2017) 3523-3531.
[79]W. Chen, S. Huang, Y. Lin, Performance analysis and optimum operation of a thermoelectric generator by Taguchi method, Appl. Energy, 158 (2015) 44-54.
[80]B. A. E. Benarfa, I. M. M. Salvado, J. R. Frade, R. C. Pullar, Fast route for synthesis of stoichiometric hydroxyapatite by employing the Taguchi method, JMADE, 109 (2016) 547-555.
[81]Instrumental Analysis, Gas chromatography.
https://www.thermofisher.com/us/en/home/industrial/chromatography/gas-chromatography-gc.html?gclid=EAIaIQobChMItdeCvZqK3AIV1JKPCh3QmARFEAAYASAAEgL96PD_BwE&ce=E.18CMD.AP101.10751.01&cid=E.18CMD.AP101.10751.01&s_kwcid=AL!3652!3!263575809724!p!!g!!gas%20chromatography&ef_id=Wr8PdQAAAMo8_n4Z:20180706095452:s
[82]行政院環境保護署,海水中化學需氧量檢測方法-重鉻酸鉀迴流法,環署檢字第 1070007386 號,2019。
[83]行政院環境保護署, 水中化學需氧量檢測方法-密閉式重鉻酸鉀迴流法,環署檢字第 1070007396 號,2019。
[84]華人百科,高錳酸鉀滴定法。
https://www.itsfun.com.tw/高錳酸鉀滴定法/wiki-0098146-3365026.