|
[1]H. Lu, C. W. Stratton, and Y. W. J. J. o. m. v. Tang, "Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle," vol. 92, no. 4, p. 401, 2020. [2]A. E. Gorbalenya, S. C. Baker, R. S. Baric, R. J. de Groot, C. Drosten, A. A. Gulyaeva, B. L. Haagmans, C. Lauber, A. M. Leontovich, and B. W. J. B. Neuman, "Severe acute respiratory syndrome-related coronavirus: The species and its viruses–a statement of the Coronavirus Study Group," 2020. [3]C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, and X. J. T. l. Gu, "Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China," vol. 395, no. 10223, pp. 497-506, 2020. [4]X. Wang, X. Deng, Q. Fu, Q. Zhou, J. Feng, H. Ma, W. Liu, and C. J. I. t. o. m. i. Zheng, "A weakly-supervised framework for COVID-19 classification and lesion localization from chest CT," vol. 39, no. 8, pp. 2615-2625, 2020. [5]G. Luengo-Alonso, F. G.-S. Pérez-Tabernero, M. Tovar-Bazaga, J. M. Arguello-Cuenca, and E. J. I. o. Calvo, "Critical adjustments in a department of orthopaedics through the COVID-19 pandemic," vol. 44, pp. 1557-1564, 2020. [6]T. E. J. B. Knight and Biobanking, "Severe acute respiratory syndrome coronavirus 2 and coronavirus disease 2019: a clinical overview and primer," vol. 18, no. 6, pp. 492-502, 2020. [7]Y. Wang, M. Hu, Q. Li, X.-P. Zhang, G. Zhai, and N. J. a. p. a. Yao, "Abnormal respiratory patterns classifier may contribute to large-scale screening of people infected with COVID-19 in an accurate and unobtrusive manner," 2020. [8]J. Chen, L. Wu, J. Zhang, L. Zhang, D. Gong, Y. Zhao, Q. Chen, S. Huang, M. Yang, and X. J. S. r. Yang, "Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography," vol. 10, no. 1, pp. 1-11, 2020. [9]K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778. [10]N. C. Codella, Q.-B. Nguyen, S. Pankanti, D. A. Gutman, B. Helba, A. C. Halpern, J. R. J. I. J. o. R. Smith, and Development, "Deep learning ensembles for melanoma recognition in dermoscopy images," vol. 61, no. 4/5, pp. 5: 1-5: 15, 2017. [11]A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. J. n. Thrun, "Dermatologist-level classification of skin cancer with deep neural networks," vol. 542, no. 7639, pp. 115-118, 2017. [12]Y. Dong, Z. Jiang, H. Shen, W. D. Pan, L. A. Williams, V. V. Reddy, W. H. Benjamin, and A. W. Bryan, "Evaluations of deep convolutional neural networks for automatic identification of malaria infected cells," in 2017 IEEE EMBS international conference on biomedical & health informatics (BHI), 2017, pp. 101-104: IEEE. [13]U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan, M. Adam, A. Gertych, R. J. C. i. b. San Tan, and medicine, "A deep convolutional neural network model to classify heartbeats," vol. 89, pp. 389-396, 2017. [14]A. Y. Hannun, P. Rajpurkar, M. Haghpanahi, G. H. Tison, C. Bourn, M. P. Turakhia, and A. Y. J. N. m. Ng, "Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network," vol. 25, no. 1, pp. 65-69, 2019. [15]Ö. Yıldırım, P. Pławiak, R.-S. Tan, U. R. J. C. i. b. Acharya, and medicine, "Arrhythmia detection using deep convolutional neural network with long duration ECG signals," vol. 102, pp. 411-420, 2018. [16]G. Gaál, B. Maga, and A. J. a. p. a. Lukács, "Attention u-net based adversarial architectures for chest x-ray lung segmentation," 2020. [17]J. C. Souza, J. O. B. Diniz, J. L. Ferreira, G. L. F. da Silva, A. C. Silva, A. C. J. C. m. de Paiva, and p. i. biomedicine, "An automatic method for lung segmentation and reconstruction in chest X-ray using deep neural networks," vol. 177, pp. 285-296, 2019. [18]J. H. Tan, H. Fujita, S. Sivaprasad, S. V. Bhandary, A. K. Rao, K. C. Chua, and U. R. J. I. s. Acharya, "Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network," vol. 420, pp. 66-76, 2017. [19]Y. Celik, M. Talo, O. Yildirim, M. Karabatak, and U. R. J. P. R. L. Acharya, "Automated invasive ductal carcinoma detection based using deep transfer learning with whole-slide images," vol. 133, pp. 232-239, 2020. [20]A. Cruz-Roa, A. Basavanhally, F. González, H. Gilmore, M. Feldman, S. Ganesan, N. Shih, J. Tomaszewski, and A. Madabhushi, "Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks," in Medical Imaging 2014: Digital Pathology, 2014, vol. 9041, p. 904103: International Society for Optics and Photonics. [21]P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul, C. Langlotz, and K. J. a. p. a. Shpanskaya, "Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning," 2017. [22]M. Talo, O. Yildirim, U. B. Baloglu, G. Aydin, U. R. J. C. M. I. Acharya, and Graphics, "Convolutional neural networks for multi-class brain disease detection using MRI images," vol. 78, p. 101673, 2019. [23]X. Xu, X. Jiang, C. Ma, P. Du, X. Li, S. Lv, L. Yu, Q. Ni, Y. Chen, and J. J. E. Su, "A deep learning system to screen novel coronavirus disease 2019 pneumonia," vol. 6, no. 10, pp. 1122-1129, 2020. [24]Z. Han, B. Wei, Y. Hong, T. Li, J. Cong, X. Zhu, H. Wei, and W. J. I. t. o. m. i. Zhang, "Accurate screening of COVID-19 using attention-based deep 3D multiple instance learning," vol. 39, no. 8, pp. 2584-2594, 2020. [25]A. Mishal, R. Saravanan, S. S. Atchitha, K. Santhiya, M. Rithika, S. S. Menaka, and T. J. H. Thiruvalluvan, "A Review of Corona Virus Disease-2019," vol. 4, no. 7, 2020. [26]S. Wang, B. Kang, J. Ma, X. Zeng, M. Xiao, J. Guo, M. Cai, J. Yang, Y. Li, and X. J. E. r. Meng, "A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19)," pp. 1-9, 2021. [27]H. Kang, L. Xia, F. Yan, Z. Wan, F. Shi, H. Yuan, H. Jiang, D. Wu, H. Sui, and C. J. I. t. o. m. i. Zhang, "Diagnosis of coronavirus disease 2019 (COVID-19) with structured latent multi-view representation learning," vol. 39, no. 8, pp. 2606-2614, 2020. [28]B. Ghoshal and A. J. a. p. a. Tucker, "Estimating uncertainty and interpretability in deep learning for coronavirus (COVID-19) detection," 2020. [29]X. Bai, C. Fang, Y. Zhou, S. Bai, Z. Liu, L. Xia, Q. Chen, Y. Xu, T. Xia, and S. Gong, "Predicting COVID-19 malignant progression with AI techniques," 2020. [30]S. Jin, B. Wang, H. Xu, C. Luo, L. Wei, W. Zhao, X. Hou, W. Ma, Z. Xu, and Z. J. M. Zheng, "AI-assisted CT imaging analysis for COVID-19 screening: Building and deploying a medical AI system in four weeks," 2020. [31]C. Jin, W. Chen, Y. Cao, Z. Xu, Z. Tan, X. Zhang, L. Deng, C. Zheng, J. Zhou, and H. J. N. c. Shi, "Development and evaluation of an artificial intelligence system for COVID-19 diagnosis," vol. 11, no. 1, pp. 1-14, 2020. [32]H. S. Maghdid, A. T. Asaad, K. Z. Ghafoor, A. S. Sadiq, S. Mirjalili, and M. K. Khan, "Diagnosing COVID-19 pneumonia from X-ray and CT images using deep learning and transfer learning algorithms," in Multimodal Image Exploitation and Learning 2021, 2021, vol. 11734, p. 117340E: International Society for Optics and Photonics. [33]C. Zheng, X. Deng, Q. Fu, Q. Zhou, J. Feng, H. Ma, W. Liu, and X. J. M. Wang, "Deep learning-based detection for COVID-19 from chest CT using weak label," 2020. [34]T. Yan, P. K. Wong, H. Ren, H. Wang, J. Wang, Y. J. C. Li, Solitons, and Fractals, "Automatic distinction between covid-19 and common pneumonia using multi-scale convolutional neural network on chest ct scans," vol. 140, p. 110153, 2020. [35]C. Ouchicha, O. Ammor, M. J. C. Meknassi, Solitons, and Fractals, "CVDNet: A novel deep learning architecture for detection of coronavirus (Covid-19) from chest x-ray images," vol. 140, p. 110245, 2020. [36]P. K. Sethy and S. K. Behera, "Detection of coronavirus disease (covid-19) based on deep features," 2020. [37]F. Rustam, A. A. Reshi, A. Mehmood, S. Ullah, B.-W. On, W. Aslam, and G. S. J. I. a. Choi, "COVID-19 future forecasting using supervised machine learning models," vol. 8, pp. 101489-101499, 2020. [38]N. S. Punn, S. K. Sonbhadra, and S. J. M. Agarwal, "COVID-19 epidemic analysis using machine learning and deep learning algorithms," 2020. [39]M. H. D. M. Ribeiro, R. G. da Silva, V. C. Mariani, L. J. C. dos Santos Coelho, Solitons, and Fractals, "Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil," vol. 135, p. 109853, 2020. [40]R. G. da Silva, M. H. D. M. Ribeiro, V. C. Mariani, L. J. C. dos Santos Coelho, Solitons, and Fractals, "Forecasting Brazilian and American COVID-19 cases based on artificial intelligence coupled with climatic exogenous variables," vol. 139, p. 110027, 2020. [41]B. J. C. Ghanbari, Solitons and Fractals, "On forecasting the spread of the COVID-19 in Iran: The second wave," vol. 140, p. 110176, 2020. [42]Z. Malki, E.-S. Atlam, A. E. Hassanien, G. Dagnew, M. A. Elhosseini, I. J. C. Gad, Solitons, and Fractals, "Association between weather data and COVID-19 pandemic predicting mortality rate: Machine learning approaches," vol. 138, p. 110137, 2020. [43]M. E. Chowdhury, T. Rahman, A. Khandakar, R. Mazhar, M. A. Kadir, Z. B. Mahbub, K. R. Islam, M. S. Khan, A. Iqbal, and N. J. I. A. Al Emadi, "Can AI help in screening viral and COVID-19 pneumonia?," vol. 8, pp. 132665-132676, 2020. [44]K. J. N. T. Fukushima and I. Its Applications, "Recent advances in the deep CNN neocognitron," vol. 10, no. 4, pp. 304-321, 2019. [45]C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, "Activation functions: Comparison of trends in practice and research for deep learning," arXiv preprint arXiv:1811.03378, 2018. [46]A. F. Agarap, "Deep learning using rectified linear units (relu)," arXiv preprint arXiv:1803.08375, 2018. [47]王声柱, "基于深度学习和半监督聚类的入侵防御技术研究," 江苏科技大学, 2016. [48]S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," in International conference on machine learning, 2015, pp. 448-456: PMLR. [49]A. K. Das, S. Kalam, C. Kumar, D. J. C. Sinha, Solitons, and Fractals, "TLCoV-An automated Covid-19 screening model using Transfer Learning from chest X-ray images," vol. 144, p. 110713, 2021. [50]D. Ardila, A. P. Kiraly, S. Bharadwaj, B. Choi, J. J. Reicher, L. Peng, D. Tse, M. Etemadi, W. Ye, and G. J. N. m. Corrado, "End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography," vol. 25, no. 6, pp. 954-961, 2019. [51]M. L. Holshue, C. DeBolt, S. Lindquist, K. H. Lofy, J. Wiesman, H. Bruce, C. Spitters, K. Ericson, S. Wilkerson, and A. J. N. E. J. o. M. Tural, "First case of 2019 novel coronavirus in the United States," 2020. [52]C. Wang, P. W. Horby, F. G. Hayden, and G. F. J. T. l. Gao, "A novel coronavirus outbreak of global health concern," vol. 395, no. 10223, pp. 470-473, 2020. [53]D. Lv, Y. Wang, S. Wang, Q. Zhang, W. Qi, Y. Li, and L. J. M. P. Sun, "A Cascade‐SEME network for COVID‐19 detection in chest x‐ray images," vol. 48, no. 5, pp. 2337-2353, 2021. [54]D. Das, K. Santosh, U. J. P. Pal, and e. s. i. medicine, "Truncated inception net: COVID-19 outbreak screening using chest X-rays," vol. 43, no. 3, pp. 915-925, 2020. [55]Z. Han, B. Wei, Y. Hong, T. Li, J. Cong, X. Zhu, H. Wei, and W. Zhang, "Accurate screening of COVID-19 using attention-based deep 3D multiple instance learning," IEEE transactions on medical imaging, vol. 39, no. 8, pp. 2584-2594, 2020. [56]C. Zheng, X. Deng, Q. Fu, Q. Zhou, J. Feng, H. Ma, W. Liu, and X. Wang, "Deep learning-based detection for COVID-19 from chest CT using weak label," MedRxiv, 2020. [57]E. Hussain, M. Hasan, M. A. Rahman, I. Lee, T. Tamanna, and M. Z. Parvez, "CoroDet: A deep learning based classification for COVID-19 detection using chest X-ray images," Chaos, Solitons & Fractals, vol. 142, p. 110495, 2021. [58]E. E.-D. Hemdan, M. A. Shouman, and M. E. Karar, "Covidx-net: A framework of deep learning classifiers to diagnose covid-19 in x-ray images," arXiv preprint arXiv:2003.11055, 2020. [59]I. D. Apostolopoulos and T. A. Mpesiana, "Covid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networks," Physical and Engineering Sciences in Medicine, vol. 43, no. 2, pp. 635-640, 2020. [60]L. Wang, Z. Q. Lin, and A. Wong, "Covid-net: A tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray images," Scientific Reports, vol. 10, no. 1, pp. 1-12, 2020. [61]P. K. Sethy, S. K. Behera, P. K. Ratha, and P. Biswas, "Detection of coronavirus disease (COVID-19) based on deep features and support vector machine," 2020. [62]S. Wang, B. Kang, J. Ma, X. Zeng, M. Xiao, J. Guo, M. Cai, J. Yang, Y. Li, and X. Meng, "A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19)," European Radiology, pp. 1-9, 2021. [63]H. Panwar, P. Gupta, M. K. Siddiqui, R. Morales-Menendez, and V. Singh, "Application of deep learning for fast detection of COVID-19 in X-Rays using nCOVnet," Chaos, Solitons & Fractals, vol. 138, p. 109944, 2020.
|