|
1.Agbai, O., I. Hamzavi, and J. Jagdeo, Laser treatments for postinflammatory hyperpigmentation: a systematic review. Jama Dermatology, 2017. 153(2): p. 199-206. 2.Pandya, A.G. and I.L. Guevara, Disorders of hyperpigmentation. Dermatologic clinics, 2000. 18(1): p. 91-98. 3.Kaufman, B.P., T. Aman, and A.F. Alexis, Postinflammatory hyperpigmentation: epidemiology, clinical presentation, pathogenesis and treatment. American Journal of Clinical Dermatology, 2018. 19(4): p. 489-503. 4.Abrol, S. and R. Sharma, A clinicoepidemiological study of facial hypermelanosis among females of reproductive age group. Our Dermatology Online/Nasza Dermatologia Online, 2019. 10(3). 5.Arora, P., et al., Lasers for treatment of melasma and post-inflammatory hyperpigmentation. Journal of cutaneous and aesthetic surgery, 2012. 5(2): p. 93. 6.Ye, N., et al., Functional crystals, in Modern Inorganic Synthetic Chemistry. 2017, Elsevier. p. 575-611. 7.Kilmer, S.L., et al., Treatment of epidermal pigmented lesions with the frequency-doubled Q-switched Nd: YAG laser: A controlled, single-impact, dose-response, multicenter trial. Archives of dermatology, 1994. 130(12): p. 1515-1519. 8.FridmanSorokina, A.V., Innovative Methods Of Miscellaneous Skin Inclusions Removal And Post-Inflammatory Hyperpigmentation Correction. European Journal of Molecular & Clinical Medicine, 2020. 7(5): p. 214-221. 9.Topol, E.J., High-performance medicine: the convergence of human and artificial intelligence. Nature medicine, 2019. 25(1): p. 44-56. 10.Bi, W.L., et al., Artificial intelligence in cancer imaging: clinical challenges and applications. CA: a cancer journal for clinicians, 2019. 69(2): p. 127-157. 11.Jamshidi, M., et al., Artificial intelligence and COVID-19: deep learning approaches for diagnosis and treatment. IEEE Access, 2020. 8: p. 109581-109595. 12.Niknejad, A. and D. Petrovic, Introduction to computational intelligence techniques and areas of their applications in medicine. Med Appl Artif Intell, 2013. 51. 13.Won, K.H., et al., A prospective, split-face, double-blinded, randomized study of the efficacy and safety of a fractional 1064-nm Q-switched Nd: YAG laser for photoaging-associated mottled pigmentation in Asian skin. Journal of Cosmetic and Laser Therapy, 2016. 18(7): p. 381-386. 14.Song, H. and H. Kang, Time sequential changes of melanocytes and melanogenic factors in laser-induced postinflammatory hyperpigmentation: P6854. Journal of the American Academy of Dermatology, 2013. 68(4). 15.Silpa-Archa, N., et al., Postinflammatory hyperpigmentation: A comprehensive overview: Epidemiology, pathogenesis, clinical presentation, and noninvasive assessment technique. Journal of the American Academy of Dermatology, 2017. 77(4): p. 591-605. 16.Kang, K.Y., et al., Incidence of cancer among female patients with systemic lupus erythematosus in Korea. Clinical rheumatology, 2010. 29(4): p. 381-388. 17.Panagiotidis, T., T. Stengos, and O. Vravosinos, On the determinants of bitcoin returns: A LASSO approach. Finance Research Letters, 2018. 27: p. 235-240. 18.Mangalathu, S., J.S. Jeon, and R. DesRoches, Critical uncertainty parameters influencing seismic performance of bridges using Lasso regression. Earthquake Engineering Structural Dynamics, 2018. 47(3): p. 784-801. 19.Lee, T.-F., et al., Using multivariate regression model with least absolute shrinkage and selection operator (LASSO) to predict the incidence of xerostomia after intensity-modulated radiotherapy for head and neck cancer. PloS one, 2014. 9(2): p. e89700. 20.Couronné, R., P. Probst, and A.-L. Boulesteix, Random forest versus logistic regression: a large-scale benchmark experiment. BMC bioinformatics, 2018. 19(1): p. 270. 21.Pal, M., Random forest classifier for remote sensing classification. International journal of remote sensing, 2005. 26(1): p. 217-222. 22.Lin, W., et al., An ensemble random forest algorithm for insurance big data analysis. Ieee access, 2017. 5: p. 16568-16575. 23.Manogaran, G. and D. Lopez, Health data analytics using scalable logistic regression with stochastic gradient descent. International Journal of Advanced Intelligence Paradigms, 2018. 10(1-2): p. 118-132. 24.Seem, J.E., Using intelligent data analysis to detect abnormal energy consumption in buildings. Energy and buildings, 2007. 39(1): p. 52-58. 25.Hund, E., D.L. Massart, and J. Smeyers-Verbeke, Inter-laboratory studies in analytical chemistry. Analytica Chimica Acta, 2000. 423(2): p. 145-165. 26.Shiffler, R.E., Maximum Z scores and outliers. The American Statistician, 1988. 42(1): p. 79-80. 27.Colombani, C., et al., Application of Bayesian least absolute shrinkage and selection operator (LASSO) and BayesCπ methods for genomic selection in French Holstein and Montbéliarde breeds. Journal of Dairy Science, 2013. 96(1): p. 575-591. 28.Kong, C., et al., LASSO-based NTCP model for radiation-induced temporal lobe injury developing after intensity-modulated radiotherapy of nasopharyngeal carcinoma. Scientific reports, 2016. 6(1): p. 1-8. 29.Lee, T.-F., et al., LASSO NTCP predictors for the incidence of xerostomia in patients with head and neck squamous cell carcinoma and nasopharyngeal carcinoma. Scientific reports, 2014. 4: p. 6217. 30.Archer, K.J. and R.V. Kimes, Empirical characterization of random forest variable importance measures. Computational statistics & data analysis, 2008. 52(4): p. 2249-2260. 31.Syarif, I., A. Prugel-Bennett, and G. Wills, SVM parameter optimization using grid search and genetic algorithm to improve classification performance. Telkomnika, 2016. 14(4): p. 1502. 32.Fernanda H. Sakamoto, M.M.A.及.R.R.A., Lasers and Other Energy-Based Technologies – Principles and Skin Interactions in Dermatology, Fourth Edition, J.L. Bolognia, MD, Editor. 2018, Elsevier Limited. . p. 2354-2363. 33.Sim, J.H., et al., Treatment of melasma by low-fluence 1064 nm Q-switched Nd: YAG laser. Journal of dermatological treatment, 2014. 25(3): p. 212-217. 34.Silpa-Archa, N., et al., Postinflammatory hyperpigmentation: A comprehensive overview: Epidemiology, pathogenesis, clinical presentation, and noninvasive assessment technique. Journal of the American Academy of Dermatology, 2017. 77(4): p. 591-605. 35.Sugawara, J., et al., Influence of the frequency of laser toning for melasma on occurrence of leukoderma and its early detection by ultraviolet imaging. Lasers in surgery and medicine, 2015. 47(2): p. 161-167. 36.Chan HH; Division of Dermatology, D.o.M., University of Hong Kong, Hong Kong. hhlchan@hkucc.hku.hk, et al., A retrospective analysis of complications in the treatment of nevus of Ota with the Q-switched alexandrite and Q-switched Nd:YAG lasers. Dermatologic Surgery [Dermatol Surg] 2000. Nov; Vol. 26 (11). 37.Chan, N.P., et al., A case series of facial depigmentation associated with low fluence Q‐switched 1,064 nm Nd: YAG laser for skin rejuvenation and melasma. Lasers in surgery and medicine, 2010. 42(8): p. 712-719. 38.Ho, S., et al., A retrospective analysis of the management of acne post‐inflammatory hyperpigmentation using topical treatment, laser treatment, or combination topical and laser treatments in oriental patients. Lasers in surgery and medicine, 2011. 43(1): p. 1-7. 39.William D. James MD, D.M.E.M., James R. Treat MD, Misha A. Rosenbach MD , Isaac M. Neuhaus MD, Disturbances of Pigmentation, in Andrews' Diseases of the Skin, W.D. James, MD; Elston, Dirk M., MD; Treat, James R., MD; Rosenbach, Misha A., MD; Neuhaus, Isaac M., MD, Editor. 2020. p. 862-880. 40.Fitzpatrick, T.B., The validity and practicality of sun-reactive skin types I through VI. Archives of dermatology, 1988. 124(6): p. 869-871. 41.Abad‐Casintahan, F., et al., Frequency and characteristics of acne‐related post‐inflammatory hyperpigmentation. The Journal of dermatology, 2016. 43(7): p. 826-828. 42.Davis, E.C. and V.D. Callender, Postinflammatory hyperpigmentation: a review of the epidemiology, clinical features, and treatment options in skin of color. The Journal of clinical and aesthetic dermatology, 2010. 3(7): p. 20. 43.Cardinali, G., D. Kovacs, and M. Picardo. Mechanisms underlying post-inflammatory hyperpigmentation: lessons from solar lentigo. in Annales de Dermatologie et de Vénéréologie. 2012. Elsevier. 44.Dong, J., J. Lanoue, and G. Goldenberg, Enlarged facial pores: an update on treatments. Cutis, 2016. 98(1): p. 33-6. 45.Henry H.L. Chan , S.G.Y.H., Laser treatment of ethnic skin, in Lasers and Lights: Procedures in Cosmetic Dermatology Series, M. George J. Hruza MD, Elizabeth L. Tanzi MD, FAAD, Jeffrey S. Dover MD, FRCPC, FRCP, Murad Alam MD, MSCI, Editor. 2018. p. 125-144. 46.Wanner, M., et al., Immediate skin responses to laser and light treatments: Therapeutic endpoints: How to obtain efficacy. Journal of the American Academy of Dermatology, 2016. 74(5): p. 821-833. 47.Wong, Y., S.S.J. Lee, and C.L. Goh, Hypopigmentation induced by frequent low-fluence, large-spot-size QS Nd: YAG laser treatments. Annals of dermatology, 2015. 27(6): p. 751-755. 48.Park, J.-H., J.-I. Kim, and W.-S. Kim, Treatment of persistent facial postinflammatory hyperpigmentation with novel pulse-in-pulse mode intense pulsed light. Dermatologic Surgery, 2016. 42(2): p. 218-224. 49.Rossi, A.M. and M.I. Perez, Treatment of hyperpigmentation. Facial Plastic Surgery Clinics, 2011. 19(2): p. 313-324. 50.Grubbs, F.E., Procedures for detecting outlying observations in samples. Technometrics, 1969. 11(1): p. 1-21. 51.Tibshirani, R., Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 1996. 58(1): p. 267-288. 52.Lankau, M.J. and T.A. Scandura, An investigation of personal learning in mentoring relationships: Content, antecedents, and consequences. Academy of management Journal, 2002. 45(4): p. 779-790. 53.Bishop, C.M., Pattern recognition and machine learning. 2006: springer. 54.Mitchell, T.M., The discipline of machine learning. Vol. 9. 2006: Carnegie Mellon University, School of Computer Science, Machine Learning …. 55.Witten, I.H. and E. Frank, Data mining: practical machine learning tools and techniques with Java implementations. Acm Sigmod Record, 2002. 31(1): p. 76-77. 56.Breiman, L., Random forests. Machine learning, 2001. 45(1): p. 5-32. 57.Breiman, L., et al., Classification and regression trees. 1984: CRC press. 58.Rokach, L., Ensemble-based classifiers. Artificial intelligence review, 2010. 33(1-2): p. 1-39. 59.Bickel, P.J. and D.A. Freedman, Asymptotic normality and the bootstrap in stratified sampling. The annals of statistics, 1984: p. 470-482. 60.Wichmann, F.A. and N.J. Hill, The psychometric function: II. Bootstrap-based confidence intervals and sampling. Perception psychophysics, 2001. 63(8): p. 1314-1329. 61.Probst, P., M.N. Wright, and A.L. Boulesteix, Hyperparameters and tuning strategies for random forest. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2019. 9(3): p. e1301. 62.Paper, D. and D. Paper, Scikit-Learn Classifier Tuning from Simple Training Sets. Hands-on Scikit-Learn for Machine Learning Applications: Data Science Fundamentals with Python, 2020: p. 137-163. 63.Rosenbaum, P.R. and D.B. Rubin, The central role of the propensity score in observational studies for causal effects. Biometrika, 1983. 70(1): p. 41-55. 64.Rosenbaum, P.R. and D.B. Rubin, Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. The American Statistician, 1985. 39(1): p. 33-38. 65.Morgan, C.J., Reducing bias using propensity score matching. 2018, Springer. 66.Gayat, E., et al., Propensity scores in intensive care and anaesthesiology literature: a systematic review. Intensive care medicine, 2010. 36(12): p. 1993-2003. 67.Pham, T., et al., Extracorporeal membrane oxygenation for pandemic influenza A (H1N1)–induced acute respiratory distress syndrome: a cohort study and propensity-matched analysis. American journal of respiratory and critical care medicine, 2013. 187(3): p. 276-285. 68.Abad-Casintahan, F., et al., Frequency and characteristics of acne-related post-inflammatory hyperpigmentation. The Journal of Dermatology, 2016. 43(7): p. 826-828. 69.Chen, Y.-T., et al., Combined vitamin C sonophoresis and neodymium-doped yttrium aluminum garnet (NdYAG) laser for facial hyperpigmentation: An outcome observation study in Asian patients. Indian Journal of Dermatology, Venereology, and Leprology, 2016. 82(5): p. 587. 70.Kang, H.J., et al., Postinflammatory hyperpigmentation associated with treatment of solar lentigines using a Q-Switched 532-nm Nd: YAG laser: a multicenter survey. Journal of Dermatological Treatment, 2017. 28(5): p. 447-451. 71.van der Schaaf, A., et al., Multivariate modeling of complications with data driven variable selection: guarding against overfitting and effects of data set size. 2012. 105(1): p. 115-121. 72.Li, W., et al., Outlier detection and removal improves accuracy of machine learning approach to multispectral burn diagnostic imaging. Journal of biomedical optics, 2015. 20(12): p. 121305. 73.Eitrich, T. and B. Lang, Efficient optimization of support vector machine learning parameters for unbalanced datasets. Journal of computational and applied mathematics, 2006. 196(2): p. 425-436. 74.Liu, C.-H., et al., Evaluating the Risk Factors of Post Inflammatory Hyperpigmentation Complications with Nd-YAG Laser Toning Using LASSO-Based Algorithm. Applied Sciences, 2020. 10(6): p. 2049. 75.Taylor, M.B., et al., Successful short-term and long-term treatment of melasma and postinflammatory hyperpigmentation using vitamin C with a full-face iontophoresis mask and a mandelic/malic acid skin care regimen. Journal of drugs in dermatology: JDD, 2013. 12(1): p. 45. 76.Se Young Na, K.C.P., Assessment and Treatment of Photoaging-related Mottled Pigmentation, in Surgery of the Skin E-Book: Procedural Dermatology, J.K. Robinson, et al., Editors. 2014, Elsevier Health Sciences. 77.Molinar, V.E., S.C. Taylor, and A.G. Pandya, What’s new in objective assessment and treatment of facial hyperpigmentation? Dermatologic clinics, 2014. 32(2): p. 123-135. 78.Smeltzer, W.L., COSMECEUTICALS AND SKIN CARE, in Pfenninger and Fowler's Procedures for Primary Care E-Book, G.C. Fowler, Editor. 2019, Elsevier Health Sciences. 79.Lee, M.-C., et al., Treatment of melasma with mixed parameters of 1,064-nm Q-switched Nd: YAG laser toning and an enhanced effect of ultrasonic application of vitamin C: a split-face study. Lasers in medical science, 2015. 30(1): p. 159-163. 80.Won, K.H., M.H. Lee, and S.E. Chang, P259: A prospective, split-face, randomized study of the efficacy and safety of a fractional 1064-nm Q-switched Nd: YAG laser for melasma and photoaging. 프로그램북 (구 초록집), 2015. 67(2): p. 509-510. 81.Roh, M.R., H.J. Chung, and K.Y. Chung, Effects of various parameters of the 1064 nm Nd: YAG laser for the treatment of enlarged facial pores. Journal of dermatological treatment, 2009. 20(4): p. 223-228. 82.Kim, B., et al., Sebum, acne, skin elasticity, and gender difference–which is the major influencing factor for facial pores? Skin Research and Technology, 2013. 19(1): p. e45-e53. 83.Jimenez, F., E. Poblet, and A. Izeta, Reflections on how wound healing‐promoting effects of the hair follicle can be translated into clinical practice. Experimental Dermatology, 2015. 24(2): p. 91-94. 84.Chou, W.C., et al., Direct migration of follicular melanocyte stem cells to the epidermis after wounding or UVB irradiation is dependent on Mc1r signaling. Nature medicine, 2013. 19(7): p. 924-929. 85.Mathew, M.L., et al., Intense pulsed light therapy for acne-induced post-inflammatory erythema. Indian dermatology online journal, 2018. 9(3): p. 159. 86.Leong Ee, H., et al., Treatment of acquired bilateral nevus of ota‐like macules (Hori's nevus) with a combination of the 532 nm Q‐Switched Nd: YAG laser followed by the 1,064 nm Q‐switched Nd: YAG is more effective: prospective study. Dermatologic surgery, 2006. 32(1): p. 34-40. 87.Park, J.M., H. Tsao, and S. Tsao, Combined use of intense pulsed light and Q‐switched ruby laser for complex dyspigmentation among Asian patients. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery, 2008. 40(2): p. 128-133. 88.Grover, C. and B. Reddu, The therapeutic value of glycolic acid peels in dermatology. Indian Journal of Dermatology, Venereology, and Leprology, 2003. 69(2): p. 148. 89.Kim, J., et al., Histopathological study of the treatment of melasma lesions using a low‐fluence Q‐switched 1064‐nm neodymium: yttrium–aluminium–garnet laser. Clinical and Experimental Dermatology: Clinical dermatology, 2013. 38(2): p. 167-171. 90.Tian, B., Laser toning for melasma: A single-centre experience with 38 970 cases. Journal of Cosmetic and Laser Therapy, 2017. 19(3): p. 140-142. 91.Choi, C.P., et al., Retrospective analysis of melasma treatment using a dual mode of low-fluence Q-switched and long-pulse Nd: YAG laser vs. low-fluence Q-switched Nd: YAG laser monotherapy. Journal of Cosmetic and Laser Therapy, 2015. 17(1): p. 2-8. 92.Matsunaga, K.N.H.A.S.T.Y.Y.S.W.K., Comparative study of treatment efficacy and the incidence of post‐inflammatory hyperpigmentation with different degrees of irradiation using two different quality‐switched lasers for removing solar lentigines on Asian skin. JEDV. 27(3): p. 307-312. 93.Wanner, M., et al., Immediate skin responses to laser and light treatments: warning endpoints: how to avoid side effects. Journal of the American Academy of Dermatology, 2016. 74(5): p. 807-819
|