[1]PJ Landrigan. (2017). Air pollution and health. Lancet Public Health, 2(1), e4–e5.
[2]行政院環保署,“室內空氣品質標準”,中華民國行政院環境保護署空字第1010106229號,2012。
[3]C Shao, Y Chang, Y Long. “High performance of nanostructured ZnO film gas sensor at room temperature.” Sensors & Actuators: B. Chemical 204, no. C (2014): 666–672.
[4]J Qi, H Zhang, S Lu, X Li, M Xu, Y Zhang. “High Performance Indium-Doped ZnO Gas Sensor.” Journal of Nanomaterials 2015 (2015): 74.
[5]C Shao, Y Chang, Y Long. “High performance of nanostructured ZnO film gas sensor at room temperature.” Sensors & Actuators: B. Chemical 204, no. C (2014): 666–672.
[6]J Qi, H Zhang, S Lu, X Li, M Xu, Y Zhang. “High Performance Indium-Doped ZnO Gas Sensor.” Journal of Nanomaterials 2015 (2015): 74.
[7]MM Hassan, W Khan, P Mishra, SS Islam, AH Naqvi. “Enhancement in alcohol vapor sensitivity of Cr doped ZnO gas sensor.” Materials Research Bulletin 93 (2017): 391–400.
[8]L Wangi, Y Kang, X Liu, S Zhang, W Huang, S Wang. “ZnO nanorod gas sensor for ethanol detection.” Sensors & Actuators: B. Chemical 162, no. 1 (2011): 237-243.
[9]F Wein, H Zhang, M Nguyen, M Ying, R Gao,Z Jiao. “Template-free synthesis of flower-like SnO2 hierarchical nanostructures with improved gas sensing performance.” Sensors & Actuators: B. Chemical 215, no. C (2015): 15–23.
[10]CJ Tsai, ML Chen, AD Ye, IF Mao. “Single SnO2 gas sensor as a practical tool for evaluating the efficiency of odor control engineering at food waste composting plants.” Sensors & Actuators: B. Chemical 169 (2012): 248–254.
[11]W Zhang, B Yang, J Liu, X Chen, X Wang, C Yang. “Highly sensitive and low operating temperature SnO2 gas sensor doped by Cu and Zn two elements.” Sensors & Actuators: B. Chemical 243 (2017): 982–989.
[12]A Sklorz, S Janßen, W Lang. “Application of a miniaturised packed gas chromatography column and a SnO2 gas detector for analysis of low molecular weight hydrocarbons with focus on ethylene detection.” Sensors & Actuators: B. Chemical 180 (2013): 43-49..
[13]E Lackner, J Krainer, R Wimmer-Teubenbacher, F Sosada, M Deluca, C Gspan, K Rohracher, E Wachmann, A Köck. “Carbon monoxide detection with CMOS integrated thin film SnO2 gas sensor.” Materials Today: Proceedings 4, no. 7 (2017): 7128–7131.
[14]M Zhang, T Xue, S Xu, Z Li, Y Yan, Y Huang. “Adverse effect of substrate surface impurities on O2 sensing properties of TiO2 gas sensor operating at high temperature.” Ceramics International 43, no. 7 (2017): 5842–5846.
[15]AM Ruiz, G Sakai, A Cornet, K Shimanoe, JR Morante, N Yamazoe. “Cr-doped TiO2 gas sensor for exhaust NO2 monitoring.” Sensors and Actuators B: Chemical 93.1-3 (2003): 509-518.
[16]S Nasirian, HM Moghaddam. “Polyaniline assisted by TiO2:SnO2 nanoparticles as a hydrogen gas sensor at environmental conditions.” Applied Surface Science 328, no. C (2015): 395–404.
[17]A Nikfarjam, N Salehifar. “Improvement in gas-sensing properties of TiO2 nanofiber sensor by UV irradiation.” Sensors & Actuators: B. Chemical 211, no. 1 (2015): 146–156.
[18]PM Perillo, DF Rodríguez. “Low temperature trimethylamine flexible gas sensor based on TiO2 membrane nanotubes.” Journal of Alloys and Compounds 657 (2016): 765–769.
[19]E Baran, B Yazıcı. “Preparation and characterization of poly (3-hexylthiophene) sensitized Ag doped TiO2 nanotubes and its carrier density under solar light illumination.” Thin Solid Films 627 (2017): 82–93.
[20]M Righettoni, A Tricoli, S Gass, A Schmid, A Amann, SE Pratsinis. “Breath acetone monitoring by portable Si:WO3 gas sensors.” Analytica Chimica Acta 738 (2012): 69–75.
[21]G Zhang, C Xie. “A novel method in the gas identification by using WO3 gas sensor based on the temperature-programmed technique.” Sensors & Actuators: B. Chemical 206 (2015): 220–229.
[22]B Urasinska-Wojcik, TA Vincent, MF Chowdhury, JW Gardner. “Ultrasensitive WO3 gas sensors for NO2 detection in air and low oxygen environment.” Sensors & Actuators: B. Chemical 239, no. C (2017): 1051–1059.
[23]A Sharma, M Tomar, V Gupta. “WO3 nanoclusters–SnO2 film gas sensor heterostructure with enhanced response for NO2.” Sensors & Actuators: B. Chemical 176, no. C (2013): 675–684.
[24]SS Shendage, VL Patil, SA Vanalakar, SP Patil, NS Harale, JL Bhosale, JH Kim, PS Patil. “Sensitive and selective NO2 gas sensor based on WO3 nanoplates.” Sensors & Actuators: B. Chemical 240, no. C (2017): 426–433.
[25]STEINHAUER, S., et al. single suspended CuO nanowire for conductometric gas sensing. Procedia Engineering, 2012, 47 17-20.
[26]KIM, Yoon-Sung, et al. CuO nanowire gas sensors for air quality control in automotive cabin. Sensors and Actuators B: Chemical, 2008, 135.1: 298-303.
[27]VOLANTI, Diogo P., et al. The Role of Hierarchical Morphologies in the Superior Gas Sensing Performance of CuO‐Based Chemiresistors. Advanced Functional Materials, 2013, 23.14: 1759-1766.
[28]K Anand, J Kaur, RC Singh, R Thangaraj. “Preparation and characterization of Ag-doped In2O3 nanoparticles gas sensor.” Chemical Physics Letters 682 (2017): 140–146.
[29]SD Han, MS Noh, S Kim, YS Shim, YG Song, K Lee, HR Lee, S Nahm, SJ Yoon, JS Kim, CY Kang. “Versatile approaches to tune a nanocolumnar structure for optimized electrical properties of In2O3 based gas sensor.” Sensors & Actuators: B. Chemical 248 (2017): 894–901.
[30]X Liu, L Jiang, X Jiang, X Tian, X Sun, Y Wang, W He, P Hou, X Deng, X Xu. “Synthesis of Ce-doped In2O3 nanostructure for gas sensor applications.” Applied Surface Science 428 (2018): 478–484.
[31]PS Khiabani, E Marzbanrad, C Zamani, R Riahifar, B Raissi. “Fabrication of In2O3 based NO2 gas sensor through AC-electrophoretic deposition.” Sensors & Actuators: B. Chemical 166-167, no. C (2012): 128–134.
[32]F Gu, R Nie, D Han, Z Wang. “In2O3–graphene nanocomposite based gas sensor for selective detection of NO2 at room temperature.” Sensors & Actuators: B. Chemical 219 (2015): 94–99.
[33]F Li, T Zhang, X Gao, R Wang, B Li. “Coaxial electrospinning heterojunction SnO2/Au-doped In2O3 core-shell nanofibers for acetone gas sensor.” Sensors & Actuators: B. Chemical 252 (2017): 822–830.
[34]J Hu, Y Sun, Y Xue, M Zhang, P Li, K Lian, S Zhuiykov, W Zhang, Y Chen. “Highly sensitive and ultra-fast gas sensor based on CeO2-loaded In2O3 hollow spheres for ppb-level hydrogen detection.” Sensors & Actuators: B. Chemical 257 (2018): 124–135.
[35]Zhang, Y. B., Yin, J., Li, L., Zhang, L. X., & Bie, L. J. (2014). Enhanced ethanol gas-sensing properties of flower-like p-CuO/n-ZnO heterojunction nanorods. Sensors and Actuators B: Chemical, 202, 500-507.
[36]Huang, J., Dai, Y., Gu, C., Sun, Y., & Liu, J. (2013). Preparation of porous flower-like CuO/ZnO nanostructures and analysis of their gas-sensing property. Journal of Alloys and Compounds, 575, 115-122.
[37]Li, D., Qin, L., Zhao, P., Zhang, Y., Liu, D., Liu, F., ... & Lu, G. (2018). Preparation and gas-sensing performances of ZnO/CuO rough nanotubular arrays for low-working temperature H2S detection. Sensors and Actuators B: Chemical, 254, 834-841.
[38]Navale, Y. H., Navale, S. T., Stadler, F. J., Ramgir, N. S., & Patil, V. B. (2019). Enhanced NO2 sensing aptness of ZnO nanowire/CuO nanoparticle heterostructure-based gas sensors. Ceramics International, 45(2), 1513-1522.
[39]Diao, K., Xiao, J., Zheng, Z., & Cui, X. (2018). Enhanced sensing performance and mechanism of CuO nanoparticle-loaded ZnO nanowires: Comparison with ZnO-CuO core-shell nanowires. Applied Surface Science, 459, 630-638.
[40]POLOJU, Madhukar; JAYABABU, Nagabandi; REDDY, MV Ramana. Improved gas sensing performance of Al doped ZnO/CuO nanocomposite based ammonia gas sensor. Materials Science and Engineering: B, 2018, 227: 61-67.
[41]Park, S., Kim, S., Kheel, H., Hyun, S. K., Jin, C., & Lee, C. (2016). Enhanced H2S gas sensing performance of networked CuO-ZnO composite nanoparticle sensor. Materials Research Bulletin, 82, 130-135.
[42]Katoch, A., Choi, S. W., Kim, J. H., Lee, J. H., Lee, J. S., & Kim, S. S. (2015). Importance of the nanograin size on the H2S-sensing properties of ZnO–CuO composite nanofibers. Sensors and Actuators B: Chemical, 214, 111-116.
[43]Hu, Y., Zhou, X., Han, Q., Cao, Q., & Huang, Y. (2003). Sensing properties of CuO–ZnO heterojunction gas sensors. Materials Science and Engineering: B, 99(1-3), 41-43.
[44]Liu, X., Sun, Y., Yu, M., Yin, Y., Du, B., Tang, W., ... & Ashfold, M. N. (2018). Enhanced ethanol sensing properties of ultrathin ZnO nanosheets decorated with CuO nanoparticles. Sensors and Actuators B: Chemical, 255, 3384-3390.
[45]Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M., Doğan, S., ... & Morkoç, H. (2005). A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 98(4), 11.
[46]J.J. Chen, S. Jang, T.J. Anderson, ECS Transactions, “Fabrication process of
ZnO-based LEDs”, State-of-the-Art Program on Compound Semiconductors
XLIV 2, 153-172, 2006.
[47] Z.Z. Zhang, Z.P. Wei, Y.M. Lu, “p-Type ZnO on sapphire by using O2-N2
co-activating and fabrication of ZnO LED”, J. Cryst. Growth, 301– 302,
362–365, 2007.
[48] Y. Ryu, T.S. Lee, “Next generation of oxide photonic devices: ZnO- based
ultraviolet light emitting diodes”, Appl. Phys. Lett., 88, 241108, 2006.
[49]E. Fortunato, A. Pimentel, L. Pereira, “High field-effect mobility zinc oxide thin
film transistors produced at room temperature”, J. Non-Cryst. Solids, 338–340,
806–809, 2004.
[50] S. Masuda, K. Kitamura, Y. Okumura, “Transparent thin film transistors using
ZnO as an active channel layer and their electrical properties”, J. Appl. Phys.,
93, 3, 2003.
[51]P.F. Carcia, R.S. McLean, M.H. Reilly, “Transparent ZnO thin-film transistor
fabricated by rf magnetron sputtering”, Appl. Phys. Lett. 82, 7, 2003.
[52]R.L. Hoffman, “ZnO-channel thin-film transistors: Channel mobility”, J. Appl.
Phys., 95, 10, 2004.
[53]E.M.C. Fortunato, P.M.C. Barquinha, A.C.M.B.G. Pimentel, “Wide- bandgap
high-mobility ZnO thin-film transistors produced at room
temperature”, Appl. Phys. Lett., 85, 13, 2004.
[54]M. P. Lu, J. Song, M. Y. Lu, M. T. Chen, Y. Gao, L. J. Chen, Z. L. Wang. Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Letters, 9, 2009, 1223-1227.
[55]謝彬宏,“氧化鋅奈米材料的壓電特性之應用於觸覺感測器”,國立虎尾科技大學碩士論文,2009。[56]GRIGORE, Madalina, et al. Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals, 2016, 9.4: 75.
[57]JADHAV, Sunita, et al. Copper oxide nanoparticles: synthesis, characterization and their antibacterial activity. Journal of Cluster Science, 2011, 22.2: 121-129.
[58]GANDHI, S., et al. Ultrasound assisted one pot synthesis of nano-sized CuO and its nanocomposite with poly (vinyl alcohol). Journal of Materials Science, 2010, 45.6: 1688-1694.
[59]KUMAR, P. Senthil, et al. Novel CuO/chitosan nanocomposite thin film: facile hand-picking recoverable, efficient and reusable heterogeneous photocatalyst. RSC Advances, 2015, 5.71: 57493-57501.
[60]RAUL, Prasanta Kumar, et al. CuO nanorods: a potential and efficient adsorbent in water purification. Rsc Advances, 2014, 4.76: 40580-40587.
[61]J Zeleny. “The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces.” Physical Review 3.2 (1914): 69.
[62]J Zeleny. “Instability of electrified liquid surfaces.” Physical Review 10.1 (1917): 1.
[63]GI Taylor. “Disintegration of water drops in an electric field.” Proc. R. Soc. Lond. A 280.1382 (1964): 383-397.
[64]GI Taylor, AD McEwan. “The stability of a horizontal fluid interface in a vertical electric field.” Journal of Fluid Mechanics 22.1 (1965): 1-15.
[65]GI Taylor. “Studies in electrohydrodynamics. I. The circulation produced in a drop by an electric field.” Proc. R. Soc. Lond. A 291.1425 (1966): 159-166.
[66]GI Taylor. “Electrically driven jets.” Proc. R. Soc. Lond. A 313.1515 (1969): 453-475.
[67]JR Melcher, GI Taylor. “Electrohydrodynamics: a review of the role of interfacial shear stresses.” Annual Review of Fluid Mechanics 1.1 (1969): 111-146.
[68]S Fukushima, Y Karube, H Kawakami. “Preparation of ultrafine uniform electrospun polyimide nanofiber.” Polymer Journal 42.6 (2010): 514.
[69]Taylor, G. (1969, December). Electrically driven jets. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (Vol. 313, No. 1515, pp. 453-475). The Royal Society.
[70]YK Fuh, YC Wu, ZY He, ZM Huang, WW Hu. “The control of cell orientation using biodegradable alginate fibers fabricated by near-field electrospinning.” Materials Science & Engineering C 62 (2016): 879–887.
[71]S. Fukushima, Y. Karube, H. Kawakami. Preparation of ultrafine uniform electrospun polyimide nanofiber. Polymer Journal, 42, 2010, 514-518.
[72]P Gupta, C Elkins, TE Long, GL Wilkes. “Electrospinning of linear homopolymers of poly (methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent.” Polymer 46.13 (2005): 4799-4810.
[73]N Yamazoe. “Toward innovations of gas sensor technology.” Sensors & Actuators: B. Chemical 108, no. 1 (2005): 2–14.
[74]P. Gupta, C. Elkins, T. E. Long, G. L. Wilkes. Electrospinning of linear homopolymers of poly (methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer, 46, 2005, 4799-4810.
[75]陳益國, “二氧化鈦光觸媒奈米粉末之製備及其光催化效果之研究”, 國立雲林科技大學碩士論文(2003)。[76]林振裕、王立群、張章平、葛明德, J. Chin. Colloid & Interface Soc., 31 (2009), p. 26-38.
[77]N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama. Interactions of tin oxide surface with O2, H2O and H2. Surface Science, 86 ,1979, 335-344.
[78]P. B. Weisz. Effects of electronic charge transfer between adsorbate and solid on chemisorption and catalysis. The Journal of Chemical Physics, 21, 1953,1531-1538.
[79]N. Barsan, D. Koziej, U. Weimar. Metal oxide-based gas sensor research: How to. Sensors and Actuators B: Chemical, 121, 2007, 18-35.
[80]PJ Shaver. “Activated tungsten oxide gas detectors.” Applied Physics Letters 11.8 (1967): 255-257.
[81]A. Katoch, S. W. Choi, S. S. Kim. Nanograins in electrospun oxide nanofibers. Metals and Materials International, 21, 2015, 213-221.
[82]KIM, Jaehyun; YONG, Kijung. Mechanism study of ZnO nanorod-bundle sensors for H2S gas sensing. The Journal of Physical Chemistry C, 2011, 115.15: 7218-7224.
[83]Gao, C., Lin, Z. D., Li, N., Fu, P., & Wang, X. H. (2015). Preparation and H 2 S Gas-Sensing Performances of Coral-Like SnO2–CuO Nanocomposite. Acta Metallurgica Sinica (English Letters), 28(9), 1190-1197.
[84]KATOCH, Akash, et al. Importance of the nanograin size on the H2S-sensing properties of ZnO–CuO composite nanofibers. Sensors and Actuators B: Chemical, 2015, 214: 111-116.
[85]VUONG, Nguyen Minh, et al. CuO-decorated ZnO hierarchical nanostructures as efficient and established sensing materials for H2S gas sensors. Scientific Reports, 2016, 6: 26736.
[86]楊士弘. “金屬氧化物奈米結構應用於氣體感測器.” 國立高雄應用科技大學機械工程系碩士班, 高雄市, 2015[87]劉篤仁.,韓保君. 傳感器原理及應用技術 西安 : 西安電子科技大學出版社, 2003.
[88]陳一誠, 劉旭禎. 一氧化碳警報器技術專題, 工業材料雜誌, 2005, 第68-79頁.
[89]王士豪. “金屬氧化多層薄膜之光機電特性與感測應用研究.” 國立高雄應用科技大學機械工程系博士班, 高雄市, 2015[90]吳佩岑. “二氧化鈦奈米管於濕度與氣體感測器之研究.” 國立高雄應用科技大學機械工程系碩士班, 高雄市, 2014[91]邱哲瑋. “碳基混成高分子太陽能電池特性研究.” 國立高雄應用科技大學機械工程系博士班, 高雄市, 2014