|
[1] “人類面臨的最大能源挑戰是什麼?”BBC英倫網, 04 04 201. [URL] : https://www.bbc.com/ukchina/trad/39494661. [2] 工業技術研究院 綠能與環境研究所 周桂蘭 “2020 年全球再生能源現況報告”. [3] “2019台灣能源情勢回顧,風險社會與政策中心(RSPRC),” 27 02 2020. [URL] : https://rsprc.ntu.edu.tw/zh-tw/m01-3/en-trans/open-energy/1379-2019-open-energy-st-review.html. [4] S.Thomas, A.Thankappan, Perovskite Photovoltaics Basic to Advanced Concepts and Implementation, Chapter 1, A. S.Thomas, Ed., 2018. [5] “光伏發電歷史與現狀及發展趨勢分析” 中國能源網,08.03.2019. [URL] : https://solar.in-en.com/html/solar-2345142.shtml [6] V.Aggarwal, "What are the most efficient solar panels on the market? Solar panel cell efficiency explained," Energysage, 22 01 2020. [URL] : https://www.energysage.com/. [7] "NREL Scientists Demonstrate Remarkable Stability in Perovskite Solar Cells," NREL, 30 01 2018. [URL] : https://www.nrel.gov/index.html. [8] G. Hodes, P.V. Kamat, Understanding the implication of carrier diffusion length in photovoltaic cells, J. Phys. Chem. Lett. 6 (2015) 4090–4092. [9] Th.M. Brenner, D.A. Egger, A.M. Rappe, L. Kronik, G. Hodes, D. Cahen, Are mobilities in hybrid organic–inorganic halide perovskites actually “high” J. Phys. Chem. Lett. 6 (2015) 4754–4757. [10] D. Kiermasch, Ph. Rieder, K. Tvingstedt, A. Baumann, V. Dyakonov, Improved charge carrier lifetime in planar perovskite solar cells by bromine doping, Sci. Rep. 6 (2016) 39333. [11] S. Guarnera, A. Abate, W. Zhang, J.M. Foster, G. Richardson, A. Petrozza, H. J. Snaith, Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer, J. Phys. Chem. Lett. 6 (3) (2015) 432–437. [12] Q. Xue, Z. Hu, J. Liu, J. Lin, C. Sun, Z. Chen, C. Duan, J. Wang, C. Liao, W.M. Lau, Highly efficient fullerene/perovskite planar heterojunction solar cells via cathode modification with an amino-functionalized polymer interlayer, J. Mater. Chem. 2 (46) (2014) 19598–19603. [13] G. Liao, Z. Liu, B. Sun, X. Liu, J. Han, H. Ye, Y. Tu, C. Chen, T. Shi, Z. Tang, 15% efficient carbon based planar-heterojunction perovskite solar cells using TiO2/ SnO2 bilayer as electron transport layer, J. Mater. Chem. 6 (17) (2018) [14] W.-J. Yin, T. Shi and Y. Yan, Appl. Phys. Lett., Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber 2014, 104, 063903. [15] A.K. Chandiran, M.K. Nazeeruddin and M. Gratzel, Adv. Funct.The Role of Insulating Oxides in Blocking the Charge Carrier Recombination in Dye-Sensitized Solar Cells Mater., 2014, 24, 1615. [16] D. Shen, W. Zhang, F. Xie, Y. Li, A. Abate, M. Wei, Graphene quantum dots decorated TiO2 mesoporous film as an efficient electron transport layer for high-performance perovskite solar cells, J. Power Sources 402 (2018) 320–326. [17] C. Ren, Y. He, S. Li, Q. Sun, Y. Liu, Y. Wu, Y. Cui, Z. Li, H. Wang, Y. Hao, Y. Wu, Double electron transport layers for efficient and stable organic-inorganic hybrid perovskite solar cells, Org. Electron. 70 (2019) 292–299. [18] Y. Jiang, H. Liu, G. Xiu, L. Chen, R. Qin, H. Ma, Enhanced performance of planar perovskite solar cells via incorporation of Bphen/Cs 2 CO 3 -MoO 3 double interlayers, J. Power Sources 331 (2016) 240–246. [19] D.B. Liu, G. Wang, L.B. Niu, L.J. Chen, D.Y. Liu, X. Rao, A.M. Elsemanand, Q. L. Song, Energy level bending of organic-inorganic halide perovskite by interfacial dipole, Phys. Status Solidi Rapid Res. Lett. 13 (7) (2019), 1900103. [20] N.G.Park, "Perovskite solar cells: an emerging photovoltaic technology," Materialstoday, vol. 18, no. 2, pp. 65-72, 2015. [21] M.A.Green, A.Ho-Baillie, H.J.Snaith, "The emergence of perovskite solar cells," Nature Photonics, vol. 8, pp. 506-514, 2014. [22] H.Mitchell,Mark D.welch and Anton R.Chakhmouradian, Nomenclature of the perovskite supergroup: A hierarchical system of classification based on crystal structure and composition, Mineralogical Magazine, June 2017, Vol. 81(3), pp. 411–461 [23] D.B.Mitzi, "Solution-processed inorganic semiconductors," J. Mater. Chem, vol. 14, no. 15, pp. 2355-2365, 2004. [24] G.E.Eperon, S.D.Stranks, C.Menelaou, M.B.Johnston, L.M.Herz, H.J.Snaith, "Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells," Energy Environ, vol. 7, no. 3, pp. 982-988, 2014. [25] N.G.Park, "Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell," J. Phys. Chem, vol. 4, no. 15, pp. 2423-2429, 2013. [26] M.Johnsson, P.Lemmens, "Crystallography and chemistry of perovskites," Handbook of Magnetism and Advanced Magnetic Materials, 2007. [27] H.S.Kim, C.R.Lee, J.H.Im, K.B.Lee, T.Moehl, A.Marchioro, S.J.Moon, H.B. Robin, J.H.Yum, J.E.Moser, M.Grätzel, N.G.Park , "Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%," Applied physics, Inorganic chemistry, Nanophotonics and plasmonics, Optical materials, vol. 2, 2012. [28] A.Walsh, "Principles of chemical bonding and band gap engineering in hybrid organic–inorganic halide perovskites," J. Phys. Chem. C, vol. 119, no. 11, pp. 5755-5760, 2015. [29] B.O’Regan, M.Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature, vol. 353, pp. 737-40, 1991. [30] J.H.Im, C.R.Lee, J.W.Lee, S.W.Park, N.G.Park, "6.5% efficient perovskite quantum-dot-sensitized solar cell," Nanoscale, vol. 3, pp. 4088-4093, 2011. [31] H.S.Kim, C.R.Lee, J.H.Im, K.B.Lee, T.Moehl, A.Marchioro, "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%," Scientific Reports, vol. 2, p. 591, 2012. [32] Z.Song, S.C.Watthage, A.B.Phillips, M.J.Heben, "Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications," J. of Photonics for Energy, vol. 6, no. 2, 2016. [33] R.Kang, J.E.Kim, J.S.Yeo, S.Lee, Y.J.Jeon, D.Y.Kim, "Optimized organometal halide perovskite planar hybrid solar cells via control of solvent evaporation rate," J. Phys. Chem. C, vol. 118, no. 46, pp. 26513-26520, 2014. [34] "Shockley–Queisser limit," Wikipedia, 23 05 2020. [URL] : https://en.wikipedia.org/wiki/Shockley%E2%80%93Queisser_limit. [35] E.M.Hutter, M.C.Gélvez-Rueda, A.Osherov, V.Bulović, F.C.Grozema, S.D.Stranks, T.J.Savenije, "Direct-indirect character of the bandgap in methylammonium lead iodide perovskite," Nat. Mater, vol. 16, p. 115–120, 2017. [36] "Wikipedia-Schottky barrier," 2020. [URL] : https://en.wikipedia.org/wiki/Schottky_barrier. [37] H.S.Kim, N.G.Park, "Parameters Affecting I−V Hysteresis of CH3NH3PbI3 Perovskite Solar," J. Phys. Chem. Lett., vol. 5, no. 17, p. 2927–2934, 2014. [38] A. Band, A. A. Yaron, T. Livneh, H. Cohen, Y. Feldman,L. Shimon, R. Popovitz-Biro, V. Lyahovitskaya, and R. Tenne, J. Phys. Chem. B 108, 12360–12367 (2004). [39] Liao H-H, Chen L-M, Xu Z, Li G, Yang Y (2008) Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer. Appl Phys Lett 92:173303 [40] Chen F-C, Wu J-L, Yang SS, Hsieh K-H, Chen W-C (2008) Cesium carbonate as a functional interlayer for polymer photovoltaic devices. J Appl Phys 103:103721 [41] Kim HP, bin Mohd Yusoff AR, Lee HJ, Lee SJ, Kim HM, Seo GJ et al (2014) Effect of ZnO:Cs2CO3 on the performance of organic photovoltaics. Nanoscale Res Lett 9:323 [42] Li Y, Zhang D-Q, Duan L, Zhang R, Wang L-D, Qiu Y (2007) Elucidation of the electron injection mechanism of evaporated cesium carbonate cathode interlayer for organic light-emitting diodes. Appl Phys Lett 90:012119 [43] The Materials Project, mp-616458:Cs2CO3 [URL]: https://materialsproject.org/materials/mp-616458/ [44] Haopeng Dong, Xudong Guo, Wenzhe Li, Liduo Wang, Cesium Carbonate as surface modification material for organic-inorganic hybrid perovskite solar cells with enhanced performance, RSC Adv., 2014, DOI: 10.1039/C4RA08565E. [45] Z.R.Zhang, D.Wei, B.X.Xie, X.P.Yue, M.C.Li, D.D.Song, Y.F.Li, "High reproducibility of perovskite solar cells via a complete spin-coating sequential solution deposition process," Sol. Energy, vol. 122, pp. 97-103, 2015. [46] L.Y.Yue, B.Yan, M.Attridge, Z.B.Wang, "Light absorption in perovskite solar cell: fundamentals and plasmonic enhancement of infrared band absorption," Sol. Energy, vol. 124, pp. 143-152, 2016. [47] M.C.Tathavadekar, S.A.Agarkar, O.S.Game, U.P.Bansode, S.A.Kulkarni, S.G.Mhaisalkar, S.B.Ogale, "Enhancing efficiency of perovskite solar cell via surface microstructuring: superior grain growth and light harvesting effect," Sol. Energy, vol. 112, pp. 12-19, 2015. [48] L.C.Chen, C.C.Chen, J.C.Chen, C.G.Wu, "Annealing effects on high-performance CH3NH3PbI3 perovskite solar cells prepared by solution-process," Sol. Energy, vol. 122, pp. 1047-1051. [49] M.J.Wang, S.B.Li, P.Zhang, Y.F.Wang, H.Q.Li, Z.Chen, "A modified sequential method used to prepare high quality perovskite on ZnO nanorods," Chem. Phys. Lett., vol. 639, pp. 283-288, 2015. [50] M.M.Lee, J.Teuscher, T.Miyasaka, T.N.Murakami, H.J.Snaith, "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites," Science, vol. 338, pp. 643-647, 2012. [51] H.Li, S.Li, Y.Wang, H.Sarvari, P.Zhang, M.Wang, Z.chen, "A modified sequential deposition method for fabrication of Perovskite solar cells," Sol. Energy, vol. 126, pp. 243-251, 2016. [52] H.Li, Y.Xia, C.Wang, G.Wang, Y.Chen, L.Guo, D.Luo, S.Wen, "High-Efficiency and Stable Perovskite Solar Cells Prepared Using Chlorobenzene/Acetonitrile Antisolvent," ACS Appl. Mater. Interfaces, vol. 11, no. 38, p. 34989−34996, 2019. [53] E.Edri, S.Kirmayer, D.Cahen, G.Hodes, "High open-circuit voltage solar cells based on organic-inorganic lead bromide perovskite," J. Phys. Chem. Lett., vol. 4, pp. 897-902, 2013. [54] Y.Zhang, W.Liu, F.Tan, Y.Gu, "The essential role of the poly (3-hexylthiophene) hole transport layer in perovskite solar cells," J. Power Sources, vol. 274, pp. 1224-1230, 2015. [55] N.Ueoka, T.Oku, "Stability Characterization of PbI2 Added CH3NH3PbI3−xClx," ACS Appl. Mater. Interfaces, vol. 10, no. 51, p. 44443–44451, 2018. [56] H.S.Ko, J.W.Lee, N.G.Park, "15.76% Efficiency Perovskite Solar Cell Prepared under," Journal of Materials Chemistry A, vol. 3, pp. 8808-8815, 2015. [57] "G2V," 2016-2020. [URL] : https://g2voptics.com/solar-simulation/. [58] “ENLITECH,” 光炎科技股份有限公司, [URL] :https://zh-tw.enlitechnology.com/show/show-310079.htm. [59] 陳俊太、許千樹, “奈米結構於有機高分子太陽能電池的應用,” TCIA台灣化學科技產業會刊, 編號 10, 2012. [60] 吳育仁, “淺談太陽能電池的原理與應用,” 2010. [URL] :https://www.slideshare.net/5045033/r-2999059. [61] 太陽光,” 維基百科, 2020. [URL] :https://zh.wikipedia.org/wiki/%E5%A4%AA%E9%98%B3%E5%85%89. [62] “比爾-朗伯定律,” 維基百科, 2019. [URL] : https://zh.wikipedia.org/wiki/%E6%AF%94%E5%B0%94-%E6%9C%97%E4%BC%AF%E5%AE%9A%E5%BE%8B. [63]光焱科技股份有限公司, “光譜響應/量子效率/IPCE之簡介,” ENLITECH(光焱科技股份有限公司), [URL] : https://zh-tw.enlitechnology.com/show/quantum-efficiency.htm. [64]羅聖全, “掃瞄式電子顯微鏡 (SEM),” 科學研習, pp. 52-5, 2013. [65]A.Nanakoudis, “使用掃描式電子顯微鏡(SEM)進行EDS分析,” 勀傑科技有限公司, [URL] : https://www.kctech.com.tw/en/. [66]共儀中心, 逢甲大學研發處共同貴重儀器中心. [67]陳藹然, “X-光繞射與布拉格定律,” 2011. [URL] : https://highscope.ch.ntu.edu.tw/wordpress/?p=41141. [68]N.Ueoka, T.Oku, "Stability Characterization of PbI2 Added CH3NH3PbI3−xClx," ACS Appl. Mater. Interfaces, vol. 10, no. 51, p. 44443–44451, 2018. [69]宋雅筑,"藉由調整MAPbI3莫耳濃度的比例對於鈣鈦礦薄膜的影響之研究",(7)(2020) [70]S. Ito, S. Tanaka, K. Manabe, H. Nishino, Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells, J. Phys.Chem. C 118 (30) (2014) 16995–17000.
|