|
[1] International Roadmap for Devices and Systems, (2020) 9-27. [2] Samsung, Samsung Announces 3 nm GAA MBCFET PDK, ANANDTECH, (2019). [3] B. Li, T. D Sullivan, T. C. Lee, D. Badami, Reliability challenges for copper interconnects, Microelectron Reliab., 44 3 (2004) 365-380 [4] K. Venkatraman, Y. Dordi, R. Akolkar., Electrochemical Atomic Layer Deposition of Cobalt Enabled by the Surface-Limited Redox Replacement of Underpotentially Deposited Zinc, J. Electrochem. Soc., 164 (2017) 104-109. [5] S. Zhang, X. Xu, T. Lin, P. He, Recent advances in nano-materials for packaging of electronic devices, J. Mater. Sci., 30 (2019) 13855-13868. [6] D. Gall, Electron mean free path in elemental metals, J. Appl. Phys., 119 (2016) 085101 [7] O. V. Pedreira, K. Croes, H. Zahedmanesh, K. Vandersmissen, M. H. v. d. Veen, V. V. Gonzalez, D. Dictus, L. Zhao, A. Kolies, Zs. Tőkei, Electromigration and Thermal Storage Study of Barrierless Co Vias, IEEE (IITC), 2018 [8] D. Choi, Potential of Ruthenium and Cobalt as Next-generation Semiconductor Interconnects, Korean J. Met. Mater., 56 (2018) 605-610. [9] S. Dutta, S. Beyne, A. Gupta, S. Kundu, S. V. Elshocht, H. Bender, G. Jamieson, W. Vandervorst, J. Bömmels, C. J. Wilson, Zs. Tőkei, C. Adelmann., Sub-100 nm2 Cobalt Interconnects, IEEE (IRPS), 39 (2018) 731-734. [10] O.V. Pedreira, K. Croes, A. LeĞniewska, C. Wu, M.H. van der Veen, J. de Messemaeker, K. Vandersmissen, N. Jourdan, L.G. Wen, C. Adelmann, B. Briggs, V.V. Gonzalez, J. Bömmels, Zs. TĘkei., Reliability Study on Cobalt and Ruthenium as Alternative Metals for Advanced Interconnects, IEEE (IRPS), 6 (2017) 2.1-2.8. [11] C. Adelmann, L.G. Wen, A. Premkumar Peter, Y.K. Siew, Alternative metals for advanced interconnects, IEEE (IITC/AMC), 14 (2014) 173-176. [12] W.G. Liang, P. Roussel, O.V. Pedreira, B. Briggs, B. Groven, S. Dutta, M.I. Popovici, N. Heylen, I. Ciofi, K. Vanstreels, F.W. Østerberg, O. Hansen, D.H. Petersen, K. Opsomer, C. Detavernie, C.J. Wilson, S. Van Elshocht, K. Croes, J. Bömmels, Zs. Tőkei, C. Adelmann., Atomic Layer Deposition of Ruthenium with TiN Interface for Sub-10 nm Advanced Interconnects beyond Copper, ACS Appl. Mater. Interfaces, 8 (2016) 26119–26125. [13] S. Decoster, E. Camerotto, G. Murdoch, S. Kundu, Q.T. Le, Zs. Tőkei, G. Jurczak, F. Lazzarino., Patterning challenges for direct metal etch of ruthenium and molybdenum at 32 nm metal pitch and below, J. Vac. Sci. Technol. B., 40 (2022) 032802. [14] E. Pegoraro, A. Perrotta, G. Lorito, L. Bertarelli, B. N. Bozon, D. Deyo, V. Spreafico, Cu seed step coverage eqeution with target lifetime for long-throw self ionized physical vapor deposition chambers, Microelectron Eng., 256 (2022) 111717. [15] M. Leskelä, M. Ritala, Atomic layer deposition (ALD): from precursors to thin film structures, Thin Solid Films, 409 (2002) 138-146 [16] The International Roadmap For Devices and System : 2021, IEEE (IRTS), 3 (2021) 13. [17] Samsung, Samsung Announces 3 nm GAA MBCFET PDK, ANANDTECH, (2019). [18] L. B. Loeb., Fundamental Processes of Electrical Discharge in Gases, Nature, 146 (1940) 729-730 [19] 張勁燕,半導體製程設備,五南圖書出版有限公司,第九章,2009,359。 [20] S. Armini, Z. Tokei, H. Volders, Z. E. Mekki, A. Radisic, G. Beyer, W. Ruythooren, P. M. Vereecken, Impact of “terminal effect” on Cu electrochemical deposition: Filling capability for different metallization options, Microelectron Eng., 88 (2011) 754-759 [21] J. A. Oke, O. O. Olotu, T. C. Jen, Atomic layer deposition of chalcogenide thin films: processes, film properties, applications, and bibliometric prospect, J. Mater. Res., 20 (2022) 991-1019 [22] J. Lu, J. W. Elam, P. C. Stair, Atomic layer deposition - Sequential self-limiting surface reactions for advanced catalyst “bottom-up” synthesis, Surf. Sci. Rep., 71 (2016) 410-472 [23] B. W. Gregory, D. W. Suggs, J. L. Stickney, Conditions for the Deposition of CdTe by Electrochemical Atomic Layer Epitaxy, J. Electrochem. Soc., 138 (1991) 1279-1284. [24] J. S. Fang, K. H. Chen, Y. L. Cheng, G. S. Chen., Layer-by-layer deposition of breakdown-strengthened Co(Ni) films by modulating termination time over the redox replacement, 296 (2023) 127222 [25] D. Gokcen, S. E. Bae, S. R. Brankovic, Kinetics of metal deposition via surface limited redox replacement reaction, ECS Trans., 35(21) (2011) 11-22. [26] M. P. Pardavé, E. G. García, M. R. Romo, M.T. R. Silva, N. Batina, Influence of the substrate's surface structure on the mechanism and kinetics of the electrochemical UPD formation of a copper monolayer on gold, Electrochim. Acta, 56 (2011) 10083-10092 [27] P. S. Pascual, M. E. Escribano, Surface characterization of copper electrocatalysts by lead underpotential deposition, J. Electroanal. Chem., 896 (2021) 115446 [28] Y. Chen , L. Wang, A. Pradel, M. Ribes, M. C. Record, A voltammetric study of the underpotential deposition of cobalt and antimony on gold, J. Electroanal. Chem.,724 (2014) 55-61 [29] Q. ayée, T. oneux, C. B. Herman, Underpotential deposition of silver on gold from deep eutectic electrolytes, Electrochim. Acta, 237 (2017) 127-132 [30] İ. Şişman, Ü. Demir, Electrochemical growth and characterization of size-quantized CdTe thin films grown by underpotential deposition, J. Electroanal. Chem., 651 (2011) 222-227 [31] Z. Y. Aydın, S. Malekghasemi, S. Abaci, Underpotential co-deposition of ternary Cu-Te-Se semiconductor nanofilm on both flexible and rigid substrates, Appl. Surf. Sci., 470 (2019) 658-667 [32] V. Venkatasamy, N. Jayaraju, S.M. Cox, C. Thambidurai, M. Mathe, J.L. Stickney, Deposition of HgTe by electrochemical atomic layer epitaxy (EC-ALE), J. Electroanal. Chem., 589 (2006) 195-202. [33] N. Jayaraju, D. Banga, C. Thambidurai, X. Liang, Y.G. Kim, J.L. Stickney, PtRu nanofilm formation by electrochemical atomic layer deposition (E-ALD), Langmuir, 30 (2014) 3254-3263. [34] M.H. Fonticelli, D. Posadas, R.I. Tucceri, The influence of Cu adatoms on the Zn upd on polycrystalline thin gold film electrodes: a study using surface conductance measurements, J. Electroanal. Chem., 565 (2004) 359-366. [35] A. Joi, K.Venkatraman, K.C. Tso, D. Dictus, Y. Dordi, P.W. Wu, Interface Engineering Strategy Utilizing Electrochemical ALD of Cu-Zn for Enabling Metallization of Sub-10 nm Semiconductor Device Nodes, J Solid State Chem., 8 (2019) 516-521 [36] Q. Yuan, Y. Wakisaka, H. Ariga-Miwa, S. Takakusagi, K. Asakura, S. R. Brankovic, Reaction Stoichiometry and Mechanism of Pt Deposition via Surface Limited Redox Replacement of Copper UPD Layer on Au(111), J. Phys. Chem. C, 122 (2018) 16664-16673. [37] F. J. Sarabia, V. Climent, J. M. Feliu, Underpotential deposition of Nickel on platinum single crystal electrodes, J. Electroanal. Chem., 819 (2018) 391-400 [38] N. Bogolowski, S. Huxter, A. E. A. A., A. E. Latif, G, A. Attard, H. Baltruschat, Copper underpotential deposition on Ru quasi-single-crystal films, J. Electroanal. Chem., 646 (2010) 68-74. [39] M. Nakamura, O. Endo, T. Ohta, M. Ito, Y. Yoda, Surface X-ray diffraction study of Cu UPD on Au(111) electrode in 0.5 M H2SO4 solution: the coadsorption structure of UPD copper, hydration water molecule and bisulfate anion on Au(111), Surf. Sci., 514 (2002) 227-233. [40] J. Nutariya, E. Kuroiwa, D. Takimoto, Z. Shen, D. Mochizuki, W. Sugimoto, Model Electrode Study of Ru@Pt Core-Shell Nanosheet Catalysts:Pure two-dimensional growth via surface limited redox replacement, Electrochim. Acta., 283 (2018) 826-833. [41] L. B. Sheridan, D. K. Gebregziabiher, J. L. Stickney, D. B. Robinson, Formation of Palladium Nanofilms Using Electrochemical Atomic Layer Deposition (E-ALD) with Chloride Complexation, Langmuir, 29 (2013) 1592-1600. [42] N. Jayaraju, D. Banga, C. Thambidurai, X. Liang, Y. G. Kim, and J. L. Stickney, PtRu nanofilm formation by electrochemical atomic layer deposition (E-ALD), Langmuir, 30 (2014) 3254-3263. [43] X. Liang, Q. Zhang, M. D. Lay, and J. L. Stickney, Growth of Ge Nanofilms Using Electrochemical Atomic Layer Deposition, with a “Bait and Switch” Surface-Limited Reaction, American Chem. Soc., 133 (2011) 8199-8204. [44] L. B. Sheridan, J. Czerwiniski, N. Jayaraju, D. K. Gebregziabiher, J. L. Stickney, D. B. Robinson, M. P. Soriaga, Electrochemical Atomic Layer Deposition (E-ALD) of Palladium Nanofilms by Surface Limited Redox Replacement (SLRR) with EDTA Complexation, Electrocatalysis, 3 (2012) 96-107. [45] P. Sebastián, E. Gómez, V. Climent, Juan M. Feliu, Copper underpotential deposition at gold surfaces in contact with a deep eutectic solvent:New insights, Electrochem. Commun., 78 (2017) 51-55. [46] J. S. Fang, J. H. Chen, G. S. Chen, Y. L. Cheng, T. S. Chin, Direct, sequential growth of copper film on TaN/Ta barrier substrates by alternation of Pb-UPD and Cu-SLRR, Electrochim. Acta., 206 (2016) 45-51. [47] J. S. Fang, Y. S. Liu, and T. S. Chin, Atomic layer deposition of copper and copper silver films using an electrochemical process, Thin Solid Films, 580 (2015) 1-5. [48] J. S. Fang, S. L. Sun, Y. L. Cheng, G. S. Chen, and T. S. Chin, Cu and Cu(Mn) films deposited layer-by-layer via surface-limitedredox replacement and underpotential deposition, Appl. Surf. Sci., 364 (2016) 358-364. [49] J. S. Fang, Y. F. Sie, Y. L. Cheng, and G. S. Chen, A New Alternative Electrochemical Process for a Pre-Deposited UPD-Mn Mediated the Growth of Cu(Mn) Film by Controlling the Time during the Cu-SLRR, Coatings, 10 (2020) 164-177. [50] K. Venkatraman, R. Gusley, L. Yu, Y. Dordi, R. Akolkar, Electrochemical Atomic Layer Deposition of Copper:A Lead-Free Process Mediated by Surface-Limited Redox Replacement of Underpotentially Deposited Zinc, J. Electrochem. Soc., 163 (2016) D3008-D3013. [51] D. O. Banga, R. Vaidyanathan, L. Xuehai, J. L. Stickney, S. Cox, U. Happeck, “Formation of PbTe nanofilms by electrochemical atomic layer deposition (ALD)”, Electrochim. Acta., 53 (2008) 6988-6994. [52] C. Thambidurai, D. K. Gebregziabiher, X. Liang, Q. Zhang, V. Ivanova, P. H. Haumesser, J. L. Stickney, E-ALD of Cu Nanofilms on Ru/Ta Wafers Using Surface Limited Redox Replacement, J. Electrochem. Soc., 157 (2010) D466-D471. [53] K. Venkatraman, A. Joi, Y. Dordi, R. Akolkar, Electroless atomic layer deposition of copper, Electrochem. Commun., 91 (2018) 45-48. [54] R. E. Rettew, J. W. Guthrie, F. M. Alamgir, Layer-by-Layer Pt Growth on Polycrystalline Au:Surface-Limited Redox Replacement of Overpotentially Deposited Ni Monolayers, J. Electrochem. Soc., 156 (2009) D513-D516. [55] K. Venkatraman, Y. Dordi, R. Akolkar, Electrochemical Atomic Layer Deposition of Cobalt Enabled by the Surface-Limited Redox Replacement of Underpotentially Deposited Zinc, J. Electrochem. Soc., 164 (2017) D104-D109. [56] M. K. Amini, Carbon paper supported Pt/Au catalysts prepared via Cu underpotential deposition-redox replacement and investigation of their electrocatalytic activity for methanol oxidation and oxygen reduction reactions, Hydrogen Energy, 35 (2010) 10527-10538. [57] C. Thambidurai, Y. G. Kim, J. L. Stickney, Electrodeposition of Ru by atomic layer deposition (ALD), Electrochim. Acta, 53 (2008) 6157-6164 [58] I. Achari, S. Ambrozik, N. Dimitrov, Electrochemical Atomic Layer Deposition by Surface Limited Redox Replacement of Pd Thin Films in One-Cell Configuration Using Cu UPD Layers: Interrupting Mass-Transport Limited Growth, J. Electrochem. Soc., 165 (2018) J3074-J3082 [59] I. Achari, S. Ambrozik, N. Dimitrov, Electrochemical Atomic Layer Deposition of Pd Ultrathin Films by Surface Limited Redox Replacement of Underpotentially Deposited H in a Single Cell, J. Phys. Chem. C, 121 (2017) 4404-4411 [60] K. Venkatraman, R. Gusley, A. Lesak, R. Akolkara, Electrochemistry-enabled atomic layer deposition of copper:Investigation of the deposit growth rate and roughness, Vacuum Sci. & Technol. A, 37 (2019) 020901-020907. [61] Analytical Chemistry, Working Electrodes types, retrieved from https://reurl.cc/qg5ajD. [62] H. B. Yoav, R. O. Almog, Y. Sverdlov, M. Sternheim, S. Belkin, A. Freeman, Y. S. Diamand, Modified working electrodes for electrochemical whole-cell microchips, Electrochim. Acta, 82 (2012) 109-114. [63] E. J. F. Dickinson, A. J. Wain, The Butler-Volmer equation in electrochemical theory: Origins, value, and practical application, J. Electroanal. Chem., 872 (2020) 114145 [64] Analytical Chemistry, 25.4:Cyclic Voltammetry, retrieved from https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Instrumental_Analysis_(LibreTexts)/25%3A_Voltammetry/25.04%3A_Cyclic_Voltammetry [65] K.C. Honeychurch, 13 - Printed thick-film biosensors, Printed Films, (2012) 336-409 [66] A. J. Bard, L. R. Faulkner, Electrochemical Methods Fundamentals and Applications 2nd, John Wiley & Sons, Inc., (2001). [67] J. W. Gibbs, On the equilibrium of heterogeneous substances, (1878) [68] M. Morisue, Y. Fukunaka, E. Kusaka, R. Ishii, K. Kuribayashi, Effect of gravitational strength on nucleation phenomena of electrodeposited copper onto a TiN substrate, J. Electroanal. Chem. 559 (2003) 155-163. [69] D. Turnbull, and J. C. Fisher, Rate of nucleation in condensed systems, J. Chem. Phys., 17 (1949) 71-73. [70] W. Lorenz, Oscillographic overvoltage measurements, Z. Electrochem., 58 (1954) 912-918. [71] M. Fleischmann, H. R. Thirsk, The potentiostatic study of the growth of deposits on electrodes, Electrochim. Acta., 1 (1959) 146-160. [72] A. Bewick, M. Fleischmann, H. R. Thirsk, Kinetics of the electrocrystallization of thin films of calomel, Transactions of the Faraday, 58 (1962) 2200-2216. [73] B. Scharifker, G. Hills, Theoretical and experimental studies of multiple nucleation, Electrochim. Acta, 28 (1983) 879-889. [74] B. J. Hwang, R. Santhanam, Y. L. Lin, Nucleation and growth mechanism of electroformation of polypyrrole on a heat-treated gold/highly oriented pyrolytic graphite, Electrochim. Acta, 46 (2001) 2843-2853. [75] P. C. T. D. Ajello, M. L. Munford, A. A. Pasa, Transient equations for multiple nucleation on solid electrodes: a stochastic description, J. Chem. Phys., 111 (1999) 4267-4272. [76] M. C. Gao, D. E. Alman, Searching for Next Single-Phase High-Entropy Alloy Compositions, Entropy, 15 (2013) 4504-4519 [77] T. P. Moffat, D. Wheeler, D. Josel, Electrodeposition of copper in the SPS-PEG-Cl additive system I. Kinetic measurements:Influence of SPS, J. Electrochem. Soc., 151 (2004) C262-C271. [78] B. J. Hinch, C. Koziol, J. P. Toennies, G. Zhang, Single and double layer growth mechanisms induced by quantum size effects in Pb films deposited on Cu (111), Vacuum, 42 (1991) 309-311. [79] B. Rashkova, B. Guel, R. T. P. tzschke, G. Staikov, W. J. Lorenz, Electrodeposition of Pb on n-Si(111), Electrochimi. Acta, 43 (1998) 3021-3028. [80] P. C. T. D. Ajello, M. L. Munford, A. A. Pasa, Transient equations for multiple nucleation on solid electrodes:a stochastic description, J. Chem. Phys., 111 (1999) 4267-4272. [81] M. R. Romo, J. A. González, L. E. Botello, M. G. M. d. Oca, M.T. R. Silva, S. C. Avendaño, M. P. Pardavé, Electrochemical nucleation and growth of Cu onto Au nanoparticles supported on a Si (111) wafer electrode, J. Electroanal. Chem., 791 (2017) 1-7 [82] A. Sahari, A. Azizi, N. Fenineche, G. Schmerber, A. Dinia, Electrochemical study of cobalt nucleation mechanisms on different metallic substrates, Mater. Chem. Phys., 108 (2008) 345-352 [83] R. Schrebler, P. Cury, M. Orellana, H. Gómez, R. Córdova, E.A. Dalchiele, Electrochemical and nanoelectrogravimetric studies of the nucleation and growth mechanisms of rhenium on polycrystalline gold electrode, Electrochim. Acta, 46 (2001) 4309-4318 [84] K. J. J. Mayrhofer, S. J. Ashton, J. Kreuzer, M. Arenz, An Electrochemical Cell Configuration Incorporating an Ion Conducting Membrane Separator between Reference and Working Electrode, Int. J. Electrochem. Sci., 48 (2008) 1-8. [85] C. Lee, S. K. Jeong, Modulating the hydration number of calcium ions by varying the electrolyte concentration: Electrochemical performance in a Prussian blue electrode/aqueous electrolyte system for calcium-ion batteries, Electrochim. Acta, 265 (2018) 430-436. [86] C. Leighton, Electrolyte-based ionic control of functional oxides, Nature Mater., 18 (2019) 13-18. [87] Y. Zhao, F. X. Deng, L. F. Hu, Y. Q. Liu, G. B. Pan, Electrochemical deposition of copper on single-crystal gallium nitride(0001) electrode: nucleation and growth mechanism, Electrochim. Acta, 130 (2014) 537-542 [88] M. R. Khelladi, L. Mentar, A. Azizi, A. Sahari, A. Kahoul, Electrochemical nucleation and growth of copper deposition onto FTO and n-Si(1 0 0) electrodes, Mater. Chem. Phys., 115 (2009) 385-390 [89] J. A. M. Oliveira, A. F. d. Almeida, A. R. N. Campos, S. Prasad, J. J. N. Alves, R. A. C. Santana, Effect of current density, temperature and bath pH on properties of Ni–W–Co alloys obtained by electrodeposition, J. Alloys Compd., 853 (2021) 157104. [90] T. F. Xiang, M. X. Zhang, C. Li, C. D. Dong, L.Yang, W. M. Chan, CeO2 modified SiO2 acted as additive in electrodeposition of Zn-Ni alloy coating with enhanced corrosion resistance, J. Alloys Compd., 736 (2018) 62-70. [91] H. F. Alesary, S. Cihangir, A. D. Ballantyne, R. C. Harris, D. P. Weston, A. P. Abbott, K. S. Ryder, Influence of additives on the electrodeposition of zinc from a deep eutectic solvent, Electrochim. Acta, 304 (2019) 118-130. [92] Y. Hu, S. Deb, D. Li, Q. Huang, Effects of organic additives on the impurity and grain structure of electrodeposited cobalt, Electrochim. Acta, 368 (2021) 137594. [93] L. He, Y. Ji, J. Cheng, C. Wang, L. Jiang, X. Chen, H. Li, S. Ke, J. Wang, Effect of pH and Cl- concentration on the electrochemical oxidation of pyridine in low-salinity reverse osmosis concentrate: Kinetics, mechanism, and toxicity assessment, Chem. Eng., 449 (2022) 137669. [94] Y. Pang, H. Xie, Y. Sun, M. M. Titirici, G. L. Chai, Electrochemical oxygen reduction for H2O2 production: catalysts, pH effects and mechanisms, J. Mater. Chem. A, 8 (2020) 24996-25016. [95] J. Yang, J. Wu, C. Y. Zhang, S. D. Zhang, B. J. Yang, W. Emori, J. Q. Wang, Effects of Mn on the electrochemical corrosion and passivation behavior of CoFeNiMnCr high-entropy alloy system in H2SO4 solution, J. Alloys Compd., 819 (2020) 152943. [96] M. P. Gomes, I. Costa, N. Pébère, J. L. Rossi, B. Tribollet, V. Vivier, On the corrosion mechanism of Mg investigated by electrochemical impedance spectroscopy, Electrochim. Acta, 306 (2019) 61-70. [97] L. Li, H. Liu, Y. Yan, H. Zhu, H. Fang, X. Luo, Y. Dai, K. Yu, Effects of alloying elements on the electrochemical behaviors of Al-Mg-Ga-In based anode alloys, Int. J. Hydrog. Energy, 44 (2019) 12073-12084. [98] https://aic.yuntech.edu.tw/ [99] Y. Chen, L. Wang, A. Pradel, M. Ribes, M. C. Record, A tammetric study of the underpotential deposition of cobalt and antimony on gold, J. Electroanal. Chem., 724 (2011) 55-61. [100] M. Yang, H. Zhang, Q. Deng, Understanding the copper underpotential deposition process at strained gold surface, Electrochem commun., 82 (2017) 125-128. [101] L. H. M. Huizar, J. Robles, M. P. Pardave, Nucleation and growth of cobalt onto different substrates Part I. Underpotential deposition onto a gold electrode, J. Electroanal. Chem., 521 (2002) 95-106. [102] M. I. Attia, Assessment of using Carbon Soot as economic adsorbing material for the removal of cobalt(II) from aqueous solution, Main Group Chem., 13 (2014) 353-362 [103] S. Carenco, C. Sassoye, M. Faustini, P. Eloy, D. P. Debecker, H. Bluhm, M. Salmeron, The Active State of Supported Ruthenium Oxide Nanoparticles during Carbon Dioxide Methanation, J. Phys. Chem. C, 120 (2016) 15354-15361 [104] M. Damayanti, T. Sritharan, Z. H. Gan, S. G. Mhaisalkar, N. Jiang, L. Chan, Ruthenium Barrier/Seed Layer for Cu/Low-k Crystallographic Texture, Roughness, Diffusion, and Adhesion, J. Electrochem. Soc., 153 (2006) J41-J45 [105] A. Jiang, Z. Wang, Q. Li, M. Dong, An efficient ruthenium-based dual-electrocatalyst towards hydrogen evolution and oxygen reduction reactions, Mater. Today Phys., 16 (2021) 100300 [106] D. J. Morgan, Resolving ruthenium: XPS studies of common ruthenium materials, Surf Interface Anal., 47 (2015) 1072-1079 [107] S. K. Dey, J. Goswami, A. Das, W. Cao, M. Floyd, R. Carpenter, Growth and nanostructure of conformal ruthenium films by liquid-source metalorganic chemical vapor deposition, J. Appl. Phys., 94 774-777
|