|
[1]Ravindra Kumar Maurya, Brinda Bhowmick, Review of FinFET Devices and Perspective on Circuit Design Challenges, Springer Nature B.V. Silicon (2022) 14:5783–5791. [2]M. Nomitha Reddy, Deepak Kumar Panda1, A Comprehensive Review on FinFET in Terms of its Device Structureand Performance Matrices, Springer Nature B.V. Silicon (2022) 14:12015–12030. [3]Uttam Kumar Das, Tarun Kanti Bhattacharyya, Opportunities in Device Scaling for 3-nm Node and Beyond: FinFET Versus GAA-FET Versus UFET, IEEE Trans. Rel.,VOL. 67 ,NO. 6, 2633–2638. [4]Ennis T. Ogawa, Ki-Don Lee, Volker A. Blaschke, and Paul S. Ho, Electromigration Reliability Issues in Dual-Damascene Cu Interconnections, IEEE Trans. Rel., VOL. 51, NO. 4, 403-419. [5]The International Roadmap for Devices and System : 2023 IEEE (IRTS). [6]Y. Sakamoto, K. Kamada, J. Hamaguchi, A. Sano, Y. Numata, S. Kodaira, S. Toyoda, K. Suu, Improved Step Coverage of Cu Seed Layers by Magnetic-Field-Assisted Ionized Sputtering, J. Appl. Phys., 50 (2011) 05EA03-1-05EA03-3. [7]E. Pegoraro, A. Perrotta, G. Lorito, L. Bertarelli, B. N. Bozon, D. Deyo, V. Spreafico, Cu seed step coverage eution with target lifetime for long-throw self ionized physical vapor deposition chambers, Microelectron Eng, 256 (2022) 111717. [8]Zhang, S-L., U. Smith., Self-aligned silicides for Ohmic contacts in complementary metal–oxide–semiconductor technology : TiSi2, CoSi2, and NiSi, J. Vac. Sci. Technol. A 22 (2004) 1361-1370. [9]H. Huang, P. S. McLaughin, J.J. Kelly, C.C. Yang, R. G. Southwick, M. Wang, G. Bonilla, G. Karve, Time Dependent Dielectric Breakdown of Cobalt and Ruthenium Interconnects at 36nm Pitch, IEEE (IRPS) 19 (2019) 1-5. [10]O. Varela Pedreira, M. Stucchi, A. Gupta, V. Vega Gonzalez, M. van der Veen, S. Lariviere, C.J. Wilson, Zs Tőkei, K. Croes imec, Metal reliability mechanisms in Ruthenium interconnects, IEEE (IRPS) 20 (2020) 1-7. [11]S. Beyne, O.V. Pedreira, H. Oprins, I.D. Wolf, Zs. Tőkei, K. Croes, Electromigration Activation Energies in Alternative Metal Interconnects, IEEE (IRPS), 66(12) (2019) 5278-5283. [12]L. Cai, M. Zheng, Y. Lyu, W. Chen, Thermal-Aware EM Reliability for Advanced Metal Interconnects of Complementary FET, IEEE (IRPS), 69(5) (2022) 2573-2578. [13]Y. Kotsugi, S.M. Han, Y.H. Kim, T. Cheon, D.K. Nandi, R. Ramesh, N.K. Yu, K. Son, T. Tsugawa, S. Ohtake, R. Harada, Y.B. Park, B. Shong, S.H. Kim., Atomic Layer Deposition of Ru for Replacing Cu-Interconnects, Chem. Mater., 33 (2021) 5639–5651. [14]D. Tierno, O. V. Pedreira, C. Wu, N. Jourdan, L. Kljucar, Zs. Tőkei, K. Croes, Cobalt and Ruthenium drift in ultra-thin oxides, Microelectron Reliab., 100-101 (2019) 113407. [15]H.K. Lee, J. Y. Hur, Electroless copper electrolytes and its surface characteristics for semiconductor interconnects, Met. Mater. Int., 19 (2013) 821-827. [16]M.H. van der Veen, K. Vandersmissen, D. Dictus, S. Demuynck, R. Liu, X. Bin, P. Nalla, A. Lesniewska, L. Hall, K. Croes, L. Zhao, J. Bömmels, A. Kolics, Zs. Tökei., Cobalt bottom-up contact and via prefill enabling advanced logic and DRAM technologies, IEEE (IITC/MAM), 15 (2015) 25-28. [17]Baozhen Li , Timothy D. Sullivan, Tom C. Lee, Dinesh Badami, Reliability challenges for copper interconnects, Microelectronics Reliability 44 (2004) 365–380. [18]D. Choi, Potential of Ruthenium and Cobalt as Next-generation Semiconductor Interconnects, Korean J. Met. Mater., 56(8) (2018) 605-610. [19]S. Dutta, S. Beyne, A. Gupta, S. Kundu, S. V. Elshocht, H. Bender, G. Jamieson, W. Vandervorst, J. Bömmels, C. J. Wilson, Zs. Tőkei, C. Adelmann., Sub-100 nm2 Cobalt Interconnects, IEEE (IRPS), 39(5) (2018) 731-734. [20]FLEISCHER R. L., High-strength, high-temperature intermetallic compounds. Journal of materials Science, 1987, 22: 2281-2288. [21]Linghan Chen, Sushant Kumar, Masataka Yahagi, Daisuke Ando, Yuji Sutou, Daniel Gall, Ravishankar Sundararaman, and Junichi Koike, Interdiffusion reliability and resistivity scaling of intermetallic compounds as advanced interconnect materials, J. Appl. Phys. 129, 035301 (2021) 1-9. [22]Juan Li , Li Huang , Yongfeng Liang , Feng Ye , Junpin Lin , Shunli Shang , Zikui Liu, Crystal structure and phase stability of AlSc in the near-equiatomic Al–Sc alloy, Journal of Alloys and Compounds 618 (2015) 192–196.
[23] Jean-Philippe Souli´e, Kiroubanand Sankaran, Valeria Founta, Karl Opsomer, Christophe Detavernier, Joris Van de Vondel, Geoffrey Pourtois, Zsolt T˝okei, Johan Swerts, Christoph Adelmann, Al3Sc thin films for advanced interconnect applications, Microelectronic Engineering 286 (2024) 112141. [24]Kyeong-Youn Song, Jin Soo Lee, Youngjun Lee, Minwoo Cho, Hoon Choi, YoungKyun Kwon, Hoo-Jeong Lee, Study on CoAl intermetallic compound films for advanced interconnect applications: Experimental and DFT investigations, Vacuum 206 (2022) 111528. [25]C. Milanese, F. Maglia, A. Tacca, U. Anselmi-Tamburini, C. Zanotti, P. Giuliani, Ignition and reaction mechanism of Co–Al and Nb–Al intermetallic compounds prepared by combustion synthesis, Journal of Alloys and Compounds 421 (2006) 156–162 [26]Zhiqin Wen, Yuhong Zhao, Hua Hou, Jinzhong Tian, Peide Han, First-principles study of Ni-Al intermetallic compounds under various temperature and pressure, Superlattices and Microstructures 103 (2017) 9-18. [27]Dandan Zhao, Weijia Guo, Zhichao Shang, Chengyi Xu, Xinran Gao, Xiaohong Wang, The growth behavior and kinetics of intermetallic compounds in Cu–Al interface at 600◦C–800 ◦C, Intermetallics 168 (2024) 108244. [28]Yifei Feng, Xia Chen, Yangyang Li, Wenhao You, Xianzhuo Li, Bin Chen, First-principles calculations to investigate mechanical, thermodynamic and electronic properties of Al2CuMg intermetallic compound under pressure effect, Computational Condensed Matter 33 (2022) e00738. [29]S. Decoster, E. Camerotto, G. Murdoch, S. Kundu, Q.T. Le, Zs. Tőkei, G. Jurczak, F. Lazzarino., Patterning challenges for direct metal etch of ruthenium and molybdenum at 32 nm metal pitch and below, J. Vac. Sci. Technol. B, 40 (2022) 032802. [30]L. B. Loeb., Fundamental Processes of Electrical Discharge in Gases, Nature, 146(3710) (1940) 729-730. [31]T. Nelis, J. Pallosi, Glow Discharge as a Tool for Surface and Interface Analysis, Appl. Spectrosc. Rev, 41(3) (2006) 227-258. [32]L. Liljeholm, Reactive Sputter Deposition of Functional Thin Films, Fac. Sci. Tech. 945 (2012) 52. [33]D. Güttler, B. Abendroth, R. Grötzschel, W. Möller., Mechanisms of target poisoning during magnetron sputtering as investigated by real-time in situ analysis and collisional computer simulation, Appl. Phys. Lett., 85(25) (2004) 6134. [34]D. Depla, R. De Gryse, Target poisoning during reactive magnetron sputtering: Part II: the influence of chemisorption and gettering, Surf. Coat. Technol., 183(2-3) (2004) 190-195. [35]O. A. Fouad, A. K. Rumaiz, S. I. Shah, Reactive sputtering of titanium in Ar/CH4 gas mixture: Target poisoning and film characteristics, Thin Solid Films, 517(19) (2009) 5689-5694. [36]Mmalewane Modibedi, Crystalline Thin Films : The Electrochemical Atomic Layer Deposition (ECALD) view, CSIR [37]Y. Chen, L. Wang, A. Pradel, M. Ribes, M.C. Record, A tammetric study of the underpotential deposition of cobalt and antimony on gold, J. Electroanal. Chem., 724 (2011) 55-61. [38]Q. Rayée, T. Doneux, C.B. Herman, Underpotential deposition of silver on gold from deep eutectic electrolytes, Electrochim. Acta, 237 (2017) 127-132. [39]D. Gokcen, S.E. Bae, and S. R. Brankovic, Kinetics of metal deposition via surface limited redox replacement reaction, ECS Trans., 35(21) (2011) 11-22. [40]D. Gokcen, S.E. Bae, S. R. Brankovic, Kinetics of metal deposition via surface-limited redox replacement reaction, ECS Trans., 35 (2011) 11-22. [41]S. M. Sayed, K. Juttner, Electrocatalysis of oxygen and hydrogen peroxide reduction by UPD of bismuth on poly and mono-crystalline gold electrodes in acid solutuins, Electrochim. Acta, 11 (1983) 1635-1641. [42]M.Yang, H. Zhang, Q. Deng, Understanding the copper underpotential deposition process at strained gold surface, Electrochem commun., 82 (2017) 125-128. [43]N. Bogolowski, S. Huxter, Abd-El-Aziz A., Abd-El-L., G, A. Attard, H. Baltruschat, Copper underpotential deposition on Ru quasi-single-crystal films, J. Electroanal. Chem., 646(1-2) (2010) 68-74. [44]M. Nakamura, O. Endo, T. Ohta, M. Ito, Y. Yoda, Surface X-ray diffraction study of Cu UPD on Au(111) electrode in 0.5 M H2SO4 solution: the coadsorption structure of UPD copper, hydration water molecule and bisulfate anion on Au(111), Surf. Sci., 514(1-3) (2002) 227-233. [45]Q. Yuan, Y. Wakisaka, H. Ariga-Miwa, S. Takakusagi, K. Asakura, S. R. Brankovic, Reaction Stoichiometry and Mechanism of Pt Deposition via Surface Limited Redox Replacement of Copper UPD Layer on Au(111), J. Phys. Chem. C, 122(29) (2018) 16664-16673. [46]J.S. Fang, S.L. Sun, Y.L. Cheng, G.S. Chen, T.S. Chin, Cu and Cu(Mn) films deposited layer-by-layer via surface-limitedredox replacement and underpotential deposition, Appl. Surf. Sci., 364 (2016) 358-364. [47]J.S. Fang, Y.S. Liu, T.S. Chin, Atomic layer deposition of copper and copper silver films using an electrochemical process, Thin Solid Films, 580 (2015) 1-5. [48]M.H. Fonticelli, D. Posadas, R.I. Tucceri, The influence of Cu adatoms on the Zn upd on polycrystalline thin gold film electrodes : a study using surface conductance measurements, J. Electroanal. Chem., 565 (2004) 359-366. [49]A. Joi, K.Venkatraman, K.C. Tso, D. Dictus, Y. Dordi, P.W. Wu, Interface Engineering Strategy Utilizing Electrochemical ALD of Cu-Zn for Enabling Metallization of Sub-10 nm Semiconductor Device Nodes, J Solid State Chem., 8(9) (2019) 516-521 [50]S.M. Rashwan, A.E. Mohamed, S.M.A. Wahaab, M.M. Kamel, Electrodeposition and characterization of thin layers of Zn–Co alloys obtained from glycinate baths, J. Appl. Electrochem., 33 (2003) 1035-1042. [51]V. Venkatasamy, N. Jayaraju, S.M. Cox, C. Thambidurai, M. Mathe, J.L. Stickney, Deposition of HgTe by electrochemical atomic layer epitaxy (EC-ALE), J. Electroanal. Chem, 589(2) (2006) 195-202. [52]N. Jayaraju, D. Banga, C. Thambidurai, X. Liang, Y.G. Kim, J.L. Stickney, PtRu nanofilm formation by electrochemical atomic layer deposition (E-ALD), Langmuir, 30 (2014) 3254-3263. [53]D. Banga, N. Jarayaju, L. Sheridan, Y.G. Kim, B. Perdue, X. Zhang, Q. Zhang, J. Stickney, Electrodeposition of CuInSe2 (CIS) via electrochemical atomic layer deposition (E-ALD), Langmuir, 28 (2012) [54]M.K. Amini, Carbon paper supported Pt/Au catalysts prepared via Cu underpotential deposition-redox replacement and investigation of their electrocatalytic activity for methanol oxidation and oxygen reduction reactions, Int. J. Hydrog. Energy, 35(19) (2010) 10527-10538. [55]D.M. Kolb, M. Przasnyski, H. Gerischer, Underpotential deposition of metals and work function differences, Electroanal. Chem., 54 (1974) 25-38. [56]C.K. Chung, W.T. Chang, M.W. Liao, On work function and characteristics of anomalous electrodeposited nickel-cobalt films, Thin Solid Films, 519(7) (2011) 2075-2078. [57]Analytical Chemistry, Working Electrodes types, retrieved from https://reurl.cc/qg5ajD. [58]H.B. Yoav, R.O. Almog, Y. Sverdlov, M. Sternheim, S. Belkin, A. Freeman,Y.S. Diamand, Modified working electrodes for electrochemical whole-cell microchips, Electrochim. Acta, 82, 109 (2012) 109-114. [59]Department of Chemical Engineering and Biotechnology, University of Cambridge, Teaching Notes:Electrochemistry Fundamentals, retrieved from http://www.ceb.cam.ac.uk/research/groups/rg-eme/teaching notes. [60]A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamentals and Applications 2nd, John Wiley & Sons, Inc., (2001). [61]D. Turnbull, and J.C. Fisher, Rate of nucleation in condensed systems, J. Chem. Phys. 17(71) (1949) 71-73. [62]W. Lorenz, Oscillographic overtage measurements, Z. Electrochem, 58 (1954) 912-918. [63]A. Bewick, M. Fleischmann, H.R. Thirsk, Kinetics of the electrocrystallization of thin films of calomel, J. Trans. Faraday, 58 (1962) 2200-2216. [64]B. Scharifker, and G. Hills, Theoretical and experimental studies of multiple nucleation, Electrochim. Acta, 28(7) (1983) 879-889. [65]B.J. Hwang, R. Santhanam, Y.L. Lin, Nucleation and growth mechanism of electroformation of polypyrrole on a heat-treated gold/highly oriented pyrolytic graphite, Electrochim. Acta, 46 (2001) 2843-2853. [66]J.S. McEwen, A. Eichler, Phase diagram and adsorption-desorption kinetics of CO on Ru(0001) from first principles, J. Chem. Phys. 126, 094701 (2007) [67]T.P. Moffat, D. Wheeler, D. Josel, Electrodeposition of copper in the SPS-PEG-Cl additive system I. Kinetic measurements: Influence of SPS, J. Electrochem. Soc., 151 (2004) 262-271. [68]B.J. Hinch, C. Koziol, J.P. Toennies, G. Zhang, Single and double layer growth mechanisms induced by quantum size effects in Pb films deposited on Cu (111), Vaccum, 42 (1991) 309-311. [69]B. Rashkova, B. Guel, R.T. PoÈ tzschke, G. Staikov, W.J. Lorenz, Electrodeposition of Pb on n-Si(111), Electrochimica. Acta, 43(19) (1998) 3021-3028. [70]P.C.T.D. Ajello, M.L. Munford, A.A. Pasa, Transient equations for multiple nucleation on solid electrodes: a stochastic description, J. Chem. Phys., 111(9) (1999) 4267-4272. [71]A. Milchev, Electrochemical phase formation on a foreign substrate—basic theoretical concepts and some experimental results, Contemp. Phys., 32(5) (1991) 321-332. [72]S. A. Wring, J. P. Hart, Chemically modified, carbon-based electrodes and their application as electrochemical sensors for the analysis of biologically important compounds, Analyst, 117(8) (1992). [73]F. La Mantia, P. Novák, A Multiple Working Electrode for Electrochemical Cells: A Tool for Current Density Distribution Studies, J. Ger. Chem. Soc., 48(3) (2009) 528-532. [74]M. Okoshi, C.P. Chou, H. Nakai, Theoretical Analysis of Carrier Ion Diffusion in Superconcentrated Electrolyte Solutions for Sodium-Ion Batteries, J. Phys. Chem. B., 122(9) (2018) 2600-2609. [75]G. Gunawardena, G. Hills, I. Montenegro, B. Scharifker, Electrochemical nucleation:Part I general considerations, J. Electroanal. Chem., 138 (1982) 225-239. [76]D. Grujicic, B. Pesic, Electrodeposition of copper:the nucleation mechanisms, Electrochim. Acta, 47(18) (2002) 2901-2912. [77]D Grujicic, B Pesic, Reaction and nucleation mechanisms of copper electrodeposition from ammoniacal solutions on vitreous carbon, Electrochim. Acta, 50(22) (2005) 4426-4443. [78]O. Renault, A Garnier, J Morin, N Gambacorti, High-resolution XPS spectromicroscopy study of micro-patterned gold-tin surfaces, Appl. Surf. Sci., 258(24) (2012) 10077-10083. [79]L. Li, H. Liu, Y. Yan, H. Zhu, H. Fang, X. Luo, Y. Dai,K. Yu, Effects of alloying elements on the electrochemical behaviors of Al-Mg-Ga-In based anode alloys, Int. J. Hydrog. Energy, 44(23) (2019) 12073-12084. [80]A. El Kharbachi, E.M. Dematteis, K. Shinzato, S.C. Stevenson, L.J. Bannenberg, M. Heere, C. Zlotea, P.A. Szilagyi, J.P. Bonnet, W. Grochala, D.H. Gregory, T. Ichikawa, M. Baricco, B.C. Hauback, Metal Hydrides and Related Materials. Energy Carriers for Novel Hydrogen and Electrochemical Storage, J. Phys. Chem. C, 124(14) (2020) 7599-7607. [81]J. Yang, J. Wu, C.Y. Zhang, S.D. Zhang, B.J. Yang, W. Emori, J.Q. Wang, Effects of Mn on the electrochemical corrosion and passivation behavior of CoFeNiMnCr high-entropy alloy system in H2SO4 solution, J. Alloys Compd., 819 (2020) 152943. [82]M.P. Gomes, I. Costa, N. Pébère, J.L. Rossi, B. Tribollet, V. Vivier, On the corrosion mechanism of Mg investigated by electrochemical impedance spectroscopy, Electrochim. Acta, 306 (2019) 61-70. [83]K.J. Mayrhofer, S.J. Ashton, J. Kreuzer, M. Arenz, An Electrochemical Cell Configuration Incorporating an Ion Conducting Membrane Separator between Reference and Working Electrode, Int. J. Electrochem. Sci., 48(3) (2009) 528-532. [84]M. Senda, T. Kakiuchi, T. Osaka, Electrochemistry at the interface between two immiscible electrolyte solutions, Electrochim. Acta, 36(2) (1991) 253-262. [85]C. Lee, S.K. Jeong, Modulating the hydration number of calcium ions by varying the electrolyte concentration: Electrochemical performance in a Prussian blue electrode/aqueous electrolyte system for calcium-ion batteries, Electrochim. Acta, 265 (2018) 430-436. [86]C. Leighton, Electrolyte-based ionic control of functional oxides, Nature Mater., 18 (2019) 13-18. [87]C. Heubner, M. Schneider, Alexander Michaelis, Diffusion-Limited C-Rate: A Fundamental Principle Quantifying the Intrinsic Limits of Li-Ion Batteries, Adv. Energy Mater., 10(2) (2020). [88]Y. Dou, S. Han, L. Wang, X. Wang, Z. Cui, Characterization of the passive properties of 254SMO stainless steel in simulated desulfurized flue gas condensates by electrochemical analysis, XPS and ToF-SIMS, Corros. Sci., 165 (2020). [89]N. Aboudzadeh, C. Dehghanian, M. AliShokrgozar, Effect of electrodeposition parameters and substrate on morphology of Si-HA coating, Surf. Coat. Technol., 375 (2019) 341-351. [90]L. He, Y. Ji, J.Cheng, C. Wang, L.Jiang, X. Chen, H. Li, S. Ke, J. Wang, Effect of pH and Cl- concentration on the electrochemical oxidation of pyridine in low-salinity reverse osmosis concentrate: Kinetics, mechanism, and toxicity assessment, Chem. Eng., 449 (2022) 137669. [91]Y. Pang, H. Xie, Y. Sun, M.M. Titirici, G.L. Chai, Electrochemical oxygen reduction for H2O2 production: catalysts, pH effects and mechanisms, J. Mater. Chem. A, 8(47) (2020) 24996-25016. [92][91]J.A.M. Oliveira, A. F. de Almeida, A.R.N. Campos, S. Prasad, J.J.N. Alves, R.A.C. Santana, Effect of current density, temperature and bath pH on properties of Ni–W–Co alloys obtained by electrodeposition, J. Alloys Compd., 853 (2021) 157104. [93]Jamil A. Juma, The effect of organic additives in electrodeposition of Co from deep eutectic solvents, Arab. J. Chem., 14(4) (2021) 103036. [94]H.F.Alesary, S. Cihangir, A.D. Ballantyne, R.C. Harris, D.P. Weston, A.P. Abbott, K.S.Ryder, Influence of additives on the electrodeposition of zinc from a deep eutectic solvent, Electrochim. Acta, 304 (2019) 118-130. [95]K.K. Maniam, S. Paul, Progress in Electrodeposition of Zinc and Zinc Nickel Alloys Using Ionic Liquids, Appl. Sci., 10(15) (2020) 5231. [96]O. Varela Pedreira, K. Croes, A. Le niewska, C. Wu, M. H. van der Veen, J. de Messemaeker, K. Vandersmissen, N. Jourdan, L.G. Wen, C. Adelmann, B. Briggs, V. Vega Gonzalez, J. Bömmels, Zs. Tkei, Reliability Study on Cobalt and Ruthenium as Alternative Metals for Advanced Interconnects, IEEE, 6B-2.1-6B-2.8. [97]Ebrahim Abualgassem, Monzer Maarouf, Abdulhakim Bake, David Cortie, Khan Alam, Muhammad Baseer Haider, Optical and magnetic properties of cobalt doped TiN thin films grown by RF/DC magnetron sputtering, Journal of Magnetism and Magnetic Materials 550 (2022) 169023. [98]R.F. Lopes, D.R. Saldanha, F. Mesquita, A.M.H. de Andrade, L.S. Dorneles, M.A. Tumelero, P. Pureur, Spin textures and magnetotransport properties in cobalt/ruthenium and cobalt/palladium bilayers, Journal of Magnetism and Magnetic Materials 519 (2021) 1674473. [99]Kerui Song, Zhou Li, Mei Fang, Zhu Xiao, and Qian Lei, Structural and magnetic properties of micropolycrystalline cobalt thin films fabricated by direct current magnetron sputtering, Metallurgy and Materials, (2024) 384-394. [100]Min Seo, Min Kyung Cho, Un Hyeon Kang, Sin Young Jeon, Sang-Ho Lim, and Seung Hee Han, Low-Resistivity Cobalt and Ruthenium Ultra-Thin Film Deposition Using Bipolar HiPIMS Technique, ECS (2022) 11 033006. [101]Damir Hamulić, Ingrid Milošev, Dirk Lützenkirchen-Hecht, The effect of the deposition conditions on the structure, composition and morphology of electrodeposited cobalt materials, Thin Solid Films 667 (2018) 11–20. [102]Jun Hwan Moon , Seunghyun Kim, Taesoon Kim, Yoo Sang Jeon, Yanghee Kim, Jae-Pyoung Ahn, Young Keun Kim, Electrical resistivity evolution in electrodeposited Ru and Ru-Co nanowires, Journal of Materials Science & Technology 105 (2022) 17–25. [103]Eunmin Yoo, Jun Hwan Moon, Yoo Sang Jeon, Yanghee Kim, Jae-Pyoung Ahn, Young Keun Kima, Electrical resistivity and microstructural evolution of electrodeposited Co and Co-W nanowires, Materials Characterization 166 (2020) 110451. [104]Yulin Chen , Hongshan Yang , Hao Feng , Ping Yang , Jian Zhang , Baipo Shu, Electrodeposition and corrosion performance of Ni-Co alloys with different cobalt contents, Materials Today Communications 35 (2023) 106058. [105]Jun Hwan Moona, Taesoon Kim, Youngmin Lee, Seunghyun Kim, Yanghee Kim, Jae-Pyoung Ahn, Jungwoo Choi, Hyuck Mo Lee, Young Keun Kim, Electrical Resistivity Modification of Electrodeposited Mo and Mo–Co Nanowires for Interconnect Applications, Engineering 32 (2024) 127–137. [106]Chandru Thambidurai, Youn-Geun Kim, John L. Stickney, Electrodeposition of Ru by atomic layer deposition (ALD), Electrochimica Acta 53 (2008) 6157–6164. [107]Innocent Achari, Stephen Ambrozik, and Nikolay Dimitrov, Electrochemical Atomic Layer Deposition by Surface Limited Redox Replacement of Pd Thin Films in One-Cell Configuration Using Cu UPD Layers: Interrupting Mass-Transport Limited Growth, J. Electrochem. Soc., (2018) 165 (15) J3074-J3082. [108]Innocent Achari, Stephen Ambrozik, and Nikolay Dimitrov, Electrochemical Atomic Layer Deposition of Pd Ultrathin Films by Surface Limited Redox Replacement of Underpotentially Deposited H in a Single Cell, J. Phys. Chem. C. [109]Kailash Venkatraman, Ryan Gusley, Andrew Lesak, Rohan Akolkar, Electrochemistry-enabled atomic layer deposition of copper : Investigation of the deposit growth rate and roughness, J. Vac. Sci. Technol. A 37(2). [110]L. Esposito, S. Kerdilès, M. Gregoire, P. Benigni, K. Dabertrand, J. G. Mattei, and D. Mangelinck, Impact of nanosecond laser energy density on the C40-TiSi2 formation and C54-TiSi2 transformation temperature, J. Appl. Phys., (2020) 085305. [111]Diana H€oßler, Impact of Si (100) doping methods on TiSi2 formation in vertical and horizontal FET structure areas with increasing aspect ratio, Materials Science in Semiconductor Processing, 109 (2020) 104913. [112]Ryan Gusley, Kadir Sentosun, Sameer Ezzat, Kevin R. Coffey, Alan C.West, and Katayun Barmak, Electrodeposition of Epitaxial Co on Ru(0001)/Al2O3(0001), J. Electrochem. Soc., (2019), 166 (15) D875-D881. [113]Lu Yu and Rohan Akolkar, Communication—Underpotential Deposition of Lead for Investigating the Early Stages of Electroless Copper Deposition on Ruthenium, J. Electrochem. Soc., (2016), 163 (6) D247-D249. [114]Xiuting Li, Electrodeposition of multi-component alloys : Thermodynamics, kinetics and mechanism, Current Opinion in Electrochemistry, (2023) 39:101289. [115]Bing Joe Hwang, Raman Santhanam, Yi Liang Lin, Nucleation and growth mechanism of electroformation of polypyrrole on a heat-treated gold/highly oriented pyrolytic graphite, Electrochimica Acta, 46 (2001) 2843–2853. [116]Xiaochenyang Jiang, Yanying Ma, Yue Chen, Yuanqiu Li, QinglinMa, Zhaoxia Zhang, Changsui Wang, Yimin Yang, Raman analysis of cobalt blue pigment in blue and white porcelain : A reassessment, Spectrochimica Acta, 190 (2018) 61–67. [117]Duong Dinh Tuan, Fang-Chih Chang, Pen-Yuan Chen, Eilhann Kwon, Siming You, Shaoping Tong, Kun-Yi Andrew Lin, Covalent organic polymer derived carbon nanocapsule–supported cobalt as a catalyst for activating monopersulfate to degrade salicylic acid, Journal of Environmental Chemical Engineering ,9 (2021) 105377. [118]Petru Apopeia, Cezar Catrinescua, Carmen Teodosiua, Sébastien Royer, Mixed-phase TiO2 photocatalysts : Crystalline phase isolation andreconstruction, characterization and photocatalytic activity in theoxidation of 4-chlorophenol from aqueous effluents, Applied Catalysis, 160–161 (2014) 374–382. [119]Wutao Wei, Liwei Mi, Yang Gao, Zhi Zheng, Weihua Chen, and Xinxin Guan, Partial Ion-Exchange of Nickel-Sulfide-Derived Electrodes for High Performance Supercapacitors, Chem. Mater, 2014, 26, 3418-3426. [120]Jie Zhang, Chaoqun Dong, Zhenbin Wang, Hui Gao, Jiazheng Niu, Zhangquan Peng, and Zhonghua Zhang, A New Defect-Rich CoGa Layered Double Hydroxide as Efficient and Stable Oxygen Evolution Electrocatalyst, Small Methods (2019), 3, 1800286. [121]Hao Sun, Chaojun Jing, Wenhui Shang, Fei Wang, Muling Zeng, Shijie Ju, Kai Li, Zhiyu Jia, Polyoxometalate-based Composite Cluster with Core-Shell Structure: Co4(PW9)2@Graphdiyne as Stable Electrocatalyst for Oxygen Evolution and its Mechanism Research, ESI 2022. [122]Jingshu Wang, Qian Yu, Haibo Li, Ruiqing Li, Suyuan Zeng, Qingxia Yao, Zengjing Guo, Hongyan Chen, Konggang Qu, Natural DNA-Assisted RuP2 on Highly Graphitic N,P-Codoped Carbon for pH-Wide Hydrogen Evolution, ESI 2021. [123]Koshal Kishor, Sulay Saha, Alhad Parashtekar, and Raj Ganesh S Pala, Increasing Chlorine Selectivity through Weakening of Oxygen Adsorbates at Surface in Cu Doped RuO2 during Seawater Electrolysis, J. Electrochem. Soc., (2018), 165 (15) J3276-J3280. [124]Rene Böttcher, Adriana Ispas, Andreas Bund, Determination of transport parameters in [EMIm]Cl–based Ionic Liquids – Diffusion and electrical conductivity, Electrochimica Acta, 366 (2021) 137370.
|