|
[1] Powell, A. R., & Rowland, L. B. (2002). SiC materials-progress, status, and potential roadblocks. Proceedings of the IEEE, 90(6), 942-955. [2] Kimoto, T. (2015). Material science and device physics in SiC technology for high-voltage power devices. Japanese Journal of Applied Physics, 54(4), 040103. [3] Codreanu, C., Avram, M., Carbunescu, E., & Iliescu, E. (2000). Comparison of 3C–SiC, 6H–SiC and 4H–SiC MESFETs performances. Materials Science in Semiconductor Processing, 3(1-2), 137-142. [4] Toktamiş, H., & Hama, P. O. (2019). Thermoluminescence dosimetric properties of silicon carbide (SiC) used in industrial applications. Applied Radiation and Isotopes, 148, 138-146. [5] Woodilla, D., Buonomo, M., Bar‐On, I., Katz, R. N., & Whalen, T. (1993). Elevated‐Temperature Behavior of High‐Strength Silicon Carbide. Journal of The American Ceramic Society, 76(1), 249-252. [6] Talwar, D. N., & Sherbondy, J. C. (1995). Thermal expansion coefficient of 3C–SiC. Applied Physics Letters, 67(22), 3301-3303. [7] Doi, T. K., Sano, Y., Kurowaka, S., Aida, H., Ohnishi, O., Uneda, M., & Ohyama, K. (2014). Novel chemical mechanical polishing/plasma-chemical vaporization machining (CMP/P-CVM) combined processing of hard-to-process crystals based on innovative concepts. Sensors and Materials, 26(6), 403-415. [8] Xu, W., Lu, X., Pan, G., Lei, Y., & Luo, J. (2010). Ultrasonic flexural vibration assisted chemical mechanical polishing for sapphire substrate. Applied Surface Science, 256(12), 3936-3940. [9] Liu, D., Yan, R., & Chen, T. (2017). Material removal model of ultrasonic elliptical vibration-assisted chemical mechanical polishing for hard and brittle materials. The International Journal of Advanced Manufacturing Technology, 92(1-4), 81-99. [10] Deng, H., & Yamamura, K. (2013). Atomic-scale flattening mechanism of 4H-SiC (0 0 0 1) in plasma assisted polishing. CIRP Annals, 62(1), 575-578. [11] Yamamura, K., Takiguchi, T., Ueda, M., Deng, H., Hattori, A. N., & Zettsu, N. (2011). Plasma assisted polishing of single crystal SiC for obtaining atomically flat strain-free surface. CIRP Annals, 60(1), 571-574. [12] Yang, X., Ohkubo, Y., Endo, K., & Yamamura, K. (2018). AFM Observation of Initial Oxidation Stage of 4H-SiC (0001) in Electrochemical Mechanical Polishing. Procedia CIRP, 68, 735-740. [13] Murata, J., Yodogawa, K., & Ban, K. (2017). Polishing-pad-free electrochemical mechanical polishing of single-crystalline SiC surfaces using polyurethane–CeO2 core–shell particles. International Journal of Machine Tools and Manufacture, 114, 1-7. [14] Wang, C., Kurokawa, S., Doi, T., Yuan, J., Sano, Y., Aida, H., ... & Deng, Q. (2017). The polishing effect of SiC substrates in femtosecond laser irradiation assisted chemical mechanical polishing (CMP). ECS Journal of Solid State Science and Technology, 6(4), P105-P112. [15] Miyagawa, R., Ohno, Y., Deura, M., Yonenaga, I., & Eryu, O. (2018). Characterization of femtosecond-laser-induced periodic structures on SiC substrates. Japanese Journal of Applied Physics, 57(2), 025602. [16] Doi, T. K., Sano, Y., Kurowaka, S., Aida, H., Ohnishi, O., Uneda, M., & Ohyama, K. (2014). Novel chemical mechanical polishing/plasma-chemical vaporization machining (CMP/P-CVM) combined processing of hard-to-process crystals based on innovative concepts. Sensors and Materials, 26(6), 403-415. [17] He, X., Chen, Y., Zhao, H., Sun, H., Lu, X., & Liang, H. (2013). Y 2 O 3 nanosheets as slurry abrasives for chemical-mechanical planarization of copper. Friction, 1(4), 327-332. [18] Han, X., Hu, Y., & Yu, S. (2009). Investigation of material removal mechanism of silicon wafer in the chemical mechanical polishing process using molecular dynamics simulation method. Applied Physics A, 95(3), 899-905. [19] Shi, J., Chen, J., Fang, L., Sun, K., Sun, J., & Han, J. (2018). Atomistic scale nanoscratching behavior of monocrystalline Cu influenced by water film in CMP process. Applied Surface Science, 435, 983-992. [20] Guo, X., Yuan, S., Wang, X., Jin, Z., & Kang, R. (2019). Atomistic mechanisms of chemical mechanical polishing of diamond (1 0 0) in aqueous H2O2/pure H2O: molecular dynamics simulations using reactive force field (ReaxFF). Computational Materials Science, 157, 99-106. [21] Ye, Y. Y., Biswas, R., Morris, J. R., Bastawros, A., & Chandra, A. (2003). Molecular dynamics simulation of nanoscale machining of copper. Nanotechnology, 14(3), 390. [22] Zhang, L., Zhao, H., Ma, Z., Huang, H., Shi, C., & Zhang, W. (2012). A study on phase transformation of monocrystalline silicon due to ultra-precision polishing by molecular dynamics simulation. AIP Advances, 2(4), 899. [23] Wen, J., Ma, T., Zhang, W., van Duin, A. C., & Lu, X. (2017). Atomistic mechanisms of Si chemical mechanical polishing in aqueous H2O2: ReaxFF reactive molecular dynamics simulations. Computational Materials Science, 131, 230-238. [24] Agrawal, P. M., Raff, L. M., Bukkapatnam, S., & Komanduri, R. (2010). Molecular dynamics investigations on polishing of a silicon wafer with a diamond abrasive. Applied Physics A, 100(1), 89-104. [25] Meng, B., Yuan, D., & Xu, S. (2019). Coupling effect on the removal mechanism and surface/subsurface characteristics of SiC during grinding process at the nanoscale. Ceramics International, 45(2), 2483-2491. [26] Grill, A. (1999). Diamond-like carbon: state of the art. Diamond and related materials, 8(2-5), 428-434. [27] Liu, Y., Erdemir, A., & Meletis, E. I. (1996). A study of the wear mechanism of diamond-like carbon films. Surface and Coatings Technology, 82(1-2), 48-56. [28] Wang, Y., Cao, X., Zhang, Z., Huang, K., Peng, G., Fang, T., ... & Wu, J. (2019). Formation and wear performance of diamond-like carbon films on 316L stainless steel prepared by cathodic plasma electrolytic deposition. Diamond and Related Materials, 95, 135-140. [29] Aoki, Y., & Ohtake, N. (2004). Tribological properties of segment-structured diamond-like carbon films. Tribology International, 37(11-12), 941-947. [30] Yang, W., Ke, P., Fang, Y., Zheng, H., & Wang, A. (2013). Microstructure and properties of duplex (Ti: N)-DLC/MAO coating on magnesium alloy. Applied Surface Science, 270, 519-525. [31] Tillmann, W., Vogli, E., & Hoffmann, F. (2009). Wear-resistant and low-friction diamond-like-carbon (DLC)-layers for industrial tribological applications under humid conditions. Surface and Coatings Technology, 204(6-7), 1040-1045. [32] Hauert, R. (2004). An overview on the tribological behavior of diamond-like carbon in technical and medical applications. Tribology International, 37(11-12), 991-1003. [33] Field, S. K., Jarratt, M., & Teer, D. G. (2004). Tribological properties of graphite-like and diamond-like carbon coatings. Tribology International, 37(11-12), 949-956. [34] Meškinis, Š., Kopustinskas, V., Šlapikas, K., Tamulevičius, S., Guobiene, A., Gudaitis, R., & Grigaliūnas, V. (2006). Ion beam synthesis of the diamond like carbon films for nanoimprint lithography applications. Thin Solid Films, 515(2), 636-639. [35] Jastrzębski, K., & Grabarczyk, J. (2018). Radio-frequency plasma-enhanced chemical vapour deposition of carbon films on AISI 316LVM steel: Formation of a transition layer and metal whiskers, and their influence on coating properties. Thin Solid Films, 659, 16-23. [36] Ankit, K., Varade, A., Reddy, N., Dhan, S., Chellamalai, M., Balashanmugam, N., & Krishna, P. (2017). Synthesis of high hardness IR optical coating using diamond-like carbon by PECVD at room temperature. Diamond and Related Materials, 78, 39-43. [37] Wang, D. Y., Weng, K. W., & Hwang, S. Y. (2000). Study on metal-doped diamond-like carbon films synthesized by cathodic arc evaporation. Diamond and Related Materials, 9(9-10), 1762-1766. [38] Faisal, N. H., Ahmed, R., Goel, S., & Fu, Y. Q. (2014). Influence of test methodology and probe geometry on nanoscale fatigue failure of diamond-like carbon film. Surface and Coatings Technology, 242, 42-53. [39] Choi, W. S., Kim, K., Yi, J., & Hong, B. (2008). Diamond-like carbon protective anti-reflection coating for Si solar cell. Materials Letters, 62(4-5), 577-580. [40] Liu, Y., Erdemir, A., & Meletis, E. I. (1996). An investigation of the relationship between graphitization and frictional behavior of DLC coatings. Surface and Coatings Technology, 86, 564-568. [41] Yan, M., Wang, X., Zhang, S., Zhang, S., Sui, X., Li, W., ... & Liu, W. (2020). Friction and wear properties of GLC and DLC coatings under ionic liquid lubrication. Tribology International, 143, 106067. [42] Ankit, K., Varade, A., Reddy, N., Dhan, S., Chellamalai, M., Balashanmugam, N., & Krishna, P. (2017). Synthesis of high hardness IR optical coating using diamond-like carbon by PECVD at room temperature. Diamond and Related Materials, 78, 39-43. [43] Patnaik, L., Maity, S. R., & Kumar, S. (2020). Comprehensive structural, nanomechanical and tribological evaluation of silver doped DLC thin film coating with chromium interlayer (Ag-DLC/Cr) for biomedical application. Ceramics International, 46(14), 22805-22818. [44] Ray, S. C., Pong, W. F., & Papakonstantinou, P. (2016). Iron, nitrogen and silicon doped diamond like carbon (DLC) thin films: a comparative study. Thin Solid Films, 610, 42-47. [45] Yan, X., Xu, T., Chen, G., Yang, S., & Liu, H. (2004). Study of structure, tribological properties and growth mechanism of DLC and nitrogen-doped DLC films deposited by electrochemical technique. Applied Surface Science, 236(1-4), 328-335. [46] Shao, W., Zhou, Y., Shi, Z., Rao, L., Hu, T., Xing, X., & Yang, Q. (2020). Effects of carbide forming elements Me on residual stress and mechanical properties of DLC films by molecular dynamics simulation. Materials Today Communications, 23, 100946. [47] Shao, W., Shi, Z., Rao, L., Xing, X., Zhou, Y., & Yang, Q. (2020). Molecular dynamics simulation on deformation behavior of DLC films based on γ-Fe/CrN matrix. Materials Today Communications, 25, 101460. [48] Hakala, T. J., Holmberg, K., & Laukkanen, A. (2021). Coupling Molecular Dynamics and Micromechanics for the Assessment of Friction and Damage Accumulation in Diamond-Like Carbon Thin Films Under Lubricated Sliding Contacts. Lubricants, 9(3), 30. [49] Yu, Y., Tang, W., Liu, Z., & Bai, L. (2020). Deformation mechanisms of Si-doped diamond-like carbon films under uniaxial tension conditions. Diamond and Related Materials, 110, 108099. [50] Li, L., Song, W., Liu, J., Liu, Q., Wang, S., & Zhang, G. (2016). Nanomechanical and nanotribological behavior of ultra-thin silicon-doped diamond-like carbon films. Tribology International, 94, 616-623. [51] Bai, L., Srikanth, N., Zhao, B., Liu, B., Liu, Z., & Zhou, K. (2016). Lubrication mechanisms of graphene for DLC films scratched by a diamond tip. Journal of Physics D: Applied Physics, 49(48), 485302. [52] Song, J., Lee, S., Lee, J., & Yeo, C. D. (2015). Atomic degradation and wear of thin carbon films under high-speed sliding contact using molecular dynamics simulation. Tribology Letters, 60(1), 1-7. [53] Zhao, L., Alam, M., Zhang, J., Janisch, R., & Hartmaier, A. (2020). Amorphization-governed elasto-plastic deformation under nanoindentation in cubic (3C) silicon carbide. Ceramics International. [54] Chavoshi, S. Z., & Luo, X. (2016). Molecular dynamics simulation study of deformation mechanisms in 3C–SiC during nanometric cutting at elevated temperatures. Materials Science and Engineering: A, 654, 400-417. [55] Yamaguchi, M., Ueno, S., Kumai, R., Kinoshita, K., Murai, T., Tomita, T., ... & Hashimoto, S. (2010). Raman spectroscopic study of femtosecond laser-induced phase transformation associated with ripple formation on single-crystal SiC. Applied Physics A, 99(1), 23-27. [56] Si, L., Guo, D., Luo, J., & Lu, X. (2010). Monoatomic layer removal mechanism in chemical mechanical polishing process: A molecular dynamics study. Journal of Applied Physics, 107(6), 064310. [57] Wang, Y., & Guo, J. (2021). Effect of abrasive size on nano abrasive machining for wurtzite GaN single crystal via molecular dynamics study. Materials Science in Semiconductor Processing, 121, 105439. [58] Li, X., Ke, P., & Wang, A. (2015). Stress reduction of Cu-doped diamond-like carbon films from ab initio calculations. AIP Advances, 5(1), 017111. [59] Pham, V. T., & Fang, T. H. (2020). Interfacial mechanics and shear deformation of indented germanium on silicon (001) using molecular dynamics. Vacuum, 173, 109184. [60] Xu, C., Liu, C., & Wang, H. (2017). Incipient plasticity of diamond during nanoindentation. RSC Advances, 7(57), 36093-36100. [61] Yin, Z., Yu, Y., Chen, H., Li, J., & Bai, L. (2021). Nanofriction behaviors between silicon-doped diamond-like carbon films under different testing conditions. Computational Materials Science, 188, 110182. [62] Pastewka, L., Klemenz, A., Gumbsch, P., & Moseler, M. (2013). Screened empirical bond-order potentials for Si-C. Physical Review B, 87(20), 205410. [63] Goel, S. (2014). The current understanding on the diamond machining of silicon carbide. Journal of Physics D: Applied Physics, 47(24), 243001. [64] Sarikov, A., Marzegalli, A., Barbisan, L., Scalise, E., Montalenti, F., & Miglio, L. (2019). Molecular dynamics simulations of extended defects and their evolution in 3C–SiC by different potentials. Modelling and Simulation in Materials Science and Engineering, 28(1), 015002. [65] Liu, L., Xu, Z., Tian, D., Hartmaier, A., Luo, X., Zhang, J., ... & Fang, F. (2019). MD simulation of stress-assisted nanometric cutting mechanism of 3C silicon carbide. Industrial Lubrication and Tribology. [66] Cao, J., Nie, M., Liu, Y., & Li, J. (2018). Ductile-brittle transition behavior in the ultrasonic vibration-assisted internal grinding of silicon carbide ceramics. The International Journal of Advanced Manufacturing Technology, 96(9-12), 3251-3262. [67] Xiao, G., To, S., & Zhang, G. (2015). Molecular dynamics modelling of brittle–ductile cutting mode transition: case study on silicon carbide. International Journal of Machine Tools and Manufacture, 88, 214-222. [68] Tanaka, H., & Shimada, S. (2013). Damage-free machining of monocrystalline silicon carbide. CIRP Annals, 62(1), 55-58. [69] Chen, P., Liu, C., & Qin, F. (2019, August). Molecular dynamics simulations of nano grinding of silicon carbide (SiC). In 2019 20th International Conference on Electronic Packaging Technology (ICEPT) (pp. 1-4). IEEE. [70] Chavoshi, S. Z., & Luo, X. (2016). Molecular dynamics simulation study of deformation mechanisms in 3C–SiC during nanometric cutting at elevated temperatures. Materials Science and Engineering: A, 654, 400-417. [71] Meng, B., Yuan, D., Zheng, J., Qiu, P., & Xu, S. (2020). Tip-based nanomanufacturing process of single crystal SiC: Ductile deformation mechanism and process optimization. Applied Surface Science, 500, 144039. [72] Zhou, P., Shi, X., Li, J., Sun, T., Zhu, Y., Wang, Z., & Chen, J. (2019). Molecular dynamics simulation of SiC removal mechanism in a fixed abrasive polishing process. Ceramics International, 45(12), 14614-14624. [73] Zhu, B., Zhao, D., Tian, Y., Wang, S., Zhao, H., & Zhang, J. (2019). Study on the deformation mechanism of spherical diamond indenter and its influence on 3C-SiC sample during nanoindentation process via molecular dynamics simulation. Materials Science in Semiconductor Processing, 90, 143-150. [74] Leung, K. W. K., Pan, Z. L., & Warner, D. H. (2014). Atomistic-based predictions of crack tip behavior in silicon carbide across a range of temperatures and strain rates. Acta materialia, 77, 324-334. [75] Erhart, P., & Albe, K. (2005). Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide. Physical Review B, 71(3), 035211. [76] Vashishta, P., Kalia, R. K., Nakano, A., & Rino, J. P. (2007). Interaction potential for silicon carbide: A molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide. Journal of applied physics, 101(10), 103515. [77] Liu, Y., Li, B., & Kong, L. (2018). Atomistic insights on the nanoscale single grain scratching mechanism of silicon carbide ceramic based on molecular dynamics simulation. AIP Advances, 8(3), 035109. [78] Price, M. R., & Raeymaekers, B. (2017). Quantifying adhesion of ultra-thin multi-layer DLC coatings to Ni and Si substrates using shear, tension, and nanoscratch molecular dynamics simulations. Acta Materialia, 141, 317-326. [79] Bai, L., Srikanth, N., Wu, H., Liu, Y., Liu, B., & Zhou, K. (2016). Investigation on tensile behaviors of diamond-like carbon films. Journal of Non-Crystalline Solids, 443, 8-16. [80] Ghalami, Z., Ghoulipour, V., & Khanchi, A. (2019). Hydrogen and deuterium adsorption on uranium decorated graphene nanosheets: A combined molecular dynamics and density functional theory study. Current Applied Physics, 19(4), 536-541. [81] Shakouri, A., Yeo, J., Ng, T. Y., Liu, Z., & Taylor, H. (2014). Superlubricity-activated thinning of graphite flakes compressed by passivated crystalline silicon substrates for graphene exfoliation. Carbon, 80, 68-74. [82] Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117(1), 1-19. [83] Stukowski, A. (2009). Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 18(1), 015012. [84] S. Goel, A. Stukowski, X. Luo, A. Agrawal, R.L. Reuben, Anisotropy of single-crystal 3C–SiC during nanometric cutting, Modelling and Simulation in Materials Science and Engineering 21(6) (2013) 065004. [85] A. Nawaz, W. Mao, C. Lu, Y. Shen, Nano-scale elastic-plastic properties and indentation-induced deformation of single crystal 4H-SiC, Journal of The Mechanical Behavior of Biomedical Materials 66 (2017) 172-180. [86] R. Chen, R. Jiang, H. Lei, M. Liang, (2013). Material removal mechanism during porous silica cluster impact on crystal silicon substrate studied by molecular dynamics simulation, Applied Surface Science 264, 148-156. [87] D. Zhao, X. Lu, (2013). Chemical mechanical polishing: theory and experiment, Friction 1(4), 306-326. [88] D. Guo, G. Xie, J. Luo, (2013). Mechanical properties of nanoparticles: basics and applications, Journal of physics D: Applied Physics 47(1), 013001. [89] J.C. Yang, D.W. Oh, G.W. Lee, C.L. Song, T. Kim, (2010). Step height removal mechanism of chemical mechanical planarization (CMP) for sub-nano-surface finish, Wear 268(3-4), 505-510. [90] Z. Zhang, W. Yan, L. Zhang, W. Liu, Z. Song, (2011). Effect of mechanical process parameters on friction behavior and material removal during sapphire chemical mechanical polishing, Microelectronic Engineering 88(9), 3020-3023. [91] W. Zhou, H. Su, J. Dai, T. Yu, Y. Zheng, (2018). Numerical investigation on the influence of cutting-edge radius and grinding wheel speed on chip formation in SiC grinding, Ceramics International 44(17), 21451-21460. [92] Y. Hu, D. Shi, Y. Hu, H. Zhao, X. Sun, (2018). Investigation on the Material Removal and Surface Generation of a Single Crystal SiC Wafer by Ultrasonic Chemical Mechanical Polishing Combined with Ultrasonic Lapping, Materials 11(10), 2022. [93] Y. Hu, D. Shi, Y. Hu, H. Zhao, X. Sun, M. Wang, (2019). Experimental investigation on the ultrasonically assisted single-sided lapping of monocrystalline SiC substrate, Journal of Manufacturing Processes 44, 299-308. [94] L. Li, Q. He, M. Zheng, Y. Ren, X. Li, (2019). Improvement in polishing effect of silicon wafer due to low-amplitude megasonic vibration assisting chemical-mechanical polishing, Journal of Materials Processing Technology 263, 330-335. [95] K. Zhai, Q. He, L. Li, Y. Ren, (2017). Study on chemical mechanical polishing of silicon wafer with megasonic vibration assisted, Ultrasonics 80, 9-14. [96] Zhao, Q. Z., Ciobanu, F., Malzer, S., & Wang, L. J. (2007). Enhancement of optical absorption and photocurrent of 6 H-Si C by laser surface nanostructuring. Applied Physics Letters, 91(12), 121107. [97] Pham, V. T., & Fang, T. H. (2020). Pile-up and heat effect on the mechanical response of SiGe on Si (0 0 1) substrate during nanoscratching and nanoindentation using molecular dynamics. Computational Materials Science, 174, 109465. [98] Ahmadi, G., & Xia, X. (2001). A model for mechanical wear and abrasive particle adhesion during the chemical mechanical polishing process. Journal of The Electrochemical Society, 148(3), G99-G109. [99] Xue, K., & Niu, L. S. (2009). Understanding the changes in mechanical properties due to the crystalline-to-amorphization transition in SiC. Journal of Applied Physics, 106(8), 083505. [100] Bennewitz, R., Gyalog, T., Guggisberg, M., Bammerlin, M., Meyer, E., Güntherodt, H. J. (1999). Atomic-scale stick-slip processes on Cu (111). Physical Review B, 60(16), R11301. [101] Podgaynyy, N., Wezisla, S., Molls, C., Iqbal, S., Baltruschat, H. (2015). Stick-slip behaviour on Au (111) with adsorption of copper and sulfate. Beilstein Journal of Nanotechnology, 6(1), 820–830. [102] Peng, Y., Zeng, X., Yu, K., Lang, H. (2020). Deformation induced atomic-scale frictional characteristics of atomically thin two–dimensional materials. Carbon, 163, 186-196. [103] Dong, C., Shi, L., Li, L., Bai, X., Yuan, C., Tian, Y. (2017). Stick-slip behaviours of water lubrication polymer materials under low speed conditions. Tribology International, 106, 55–61. [104] Nguyen, V. T., Fang, T. H. (2020). Abrasive mechanisms and interfacial mechanics of amorphous silicon carbide thin films in chemical-mechanical planarization. Journal of Alloys and Compounds, 845, 156100. [105] Hu, J., Song, H., Sandfeld, S., Liu, X., & Wei, Y. (2021). Multiscale study of the dynamic friction coefficient due to asperity plowing. Friction, 9(4), 822-839. [106] Nguyen, V. T., Fang, T. H. (2020). Material removal and interactions between an abrasive and a SiC substrate: A molecular dynamics simulation study. Ceramics International, 46(5), 5623–5633. [107] Si, L., Guo, D., Luo, J., Lu, X., & Xie, G. (2011). Abrasive rolling effects on material removal and surface finish in chemical mechanical polishing analyzed by molecular dynamics simulation. Journal of Applied Physics, 109(8), 084335. [108] Yoon, E. S., Singh, R. A., Oh, H. J., & Kong, H. (2005). The effect of contact area on nano/micro-scale friction. Wear, 259(7-12), 1424-1431. [109] Liu, H., & Bhushan, B. (2002). Investigation of nanotribological properties of self-assembled monolayers with alkyl and biphenyl spacer chains. Ultramicroscopy, 91(1-4), 185-202. [110] Doan, D. Q., Fang, T. H., & Chen, T. H. (2020). Influences of grain size and temperature on tribological characteristics of CuAlNi alloys under nanoindentation and nanoscratch. International Journal of Mechanical Sciences, 185, 105865.
|