|
[1]Yu, H., Zubair, M., Li, G., Wang, B and Wang, L., 2019, “Electrochemical Kinetics and Cycle Stability Improvement with Nb Doping for Lithium-Rich Layered Oxides”, ACS Applied Energy Materials, 2(1), 503-512.
[2]Akgün, M., Yalçın, A., Demir, M., Güler, M. O. and Gönen, M., 2023, “Synthesis of Sn-doped Li-rich NMC as a cathode material for Li-ion batteries”, Electrochimica Acta, 440, 141743.
[3]Fu, Y., Yu, R., Wang, X., Wang, L., Cai, S., Liu, M., Lu, B., Wang, G.,Wang, D., Ren, Q. and Yang, X., 2016, “Effect of magnesium doping on properties of lithium-rich layered oxide cathodes based on a one-step co-precipitation strategy”, Journal of Materials Chemistry A, 13(4), 4941-4951.
[4]Wang, Z., Li, S., Yang, L., Liu, Z., Zhang, C., Shen, X., Gao, Y., Kong, Q., Hu, Z., Kuo, C. Y., Lin, H. J., Chen, C. T., Yang, Y., Ma, J., Hu, Z., Wang, X., Yu, R. and Chen, L., 2023, “Surface Al-doping for compromise between facilitating oxygen redox and enhancing structural stability of Li-rich layered oxide”, Energy Storage Materials, 55, 356-363.
[5]Guo, M., Qian, F., Zhao, B., Qian, Z., Wu, Z. and Liu, Z., 2020, “Trace doping by fluoride and sulfur to enhance adsorption capacity of manganese oxides for lithium recovery”, Materials and Design, 194, 108867.
[6]Lu, L., Li, L., Song, B. H., Chang, Y. L., Xia, H., Yang, J. R. and Lee, K. S., 2015, “Retarded phase transition by fluorine doping in Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material”, Journal of Power Sources, 283, 162-170.
[7]Chen, Y., Mei, J., Xu, W., He, W., Wang, L., Xie, Q. and Peng, D. L., 2022, “Multi-strategy synergistic Li-rich layered oxides with fluorine-doping and surface coating of oxygen vacancy bearing CeO2 to achieve excellent cycling stability”, Chemical Engineering Journal, 431(1), 133799.
[8]Liu, Y., Tai, Z., Zhu, W., Shi, M., Xin, Y., Guo, S., Wu, Y. and Chen, Y., 2020, “Improving electrochemical performances of Lithium-rich oxide by cooperatively doping Cr and coating Li3PO4 as cathode material for Lithium-ion batteries”, Journal of Colloid and Interface Science, 576, 468-475.
[9]Li, Q., Li, Y., Li, Y., Zhang, L., Tao, H., Zhang, J. and Yang, X., 2023, “Lithiophilicity: The key to efficient lithium metal anodes for lithium batteries”, Journal of Energy Chemistry, 77, 123-136.
[10]Gao, G., Qi, W., Shapter, J. G., Wu, Q., Yin, T. and Cui, D., 2017, “Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives”, Journal of Materials Chemistry A, 5, 19521-19540.
[11]楊紹斌,2019,”鋰離子電池製造工藝原理與應用”,化學工藝出版社,頁2~13,8月。
[12]https://batteryuniversity.com/article/bu-205-types-of-lithium-ion
[13]Ohzuku, T. and Ueda, A., 1994, “Solid-State Redox Reactions of LiCoO2 (R3 ̅m) for 4 Volt Secondary Lithium Cells”, Journal of the Electrochemical Society, 141(11), 2972.
[14]Ceder, G., Xia, H., Meng, Y. S. and Lu, L., 2007, “Electrochemical behavior and Li Diffusion study of LiCoO2 thin film electrodes prepared by PLD”, ResearchGate.
[15]Ceder, G. and Van der Ven, A., 2000, “Lithium Diffusion in Layered LixCoO2”, Electrochemical and Solid-State Letters, 3(7), 302-304.
[16]Yoshida, T., Hongo, K. and Maezono, R., 2019, “First-Principles Study of Structural Transitions in LiNiO2 and High Throughput Screening for Long Life Battery”, The Journal of Physical Chemistry C, 123(23), 14126-14131.
[17]Xiao, Z., Liu, P., Song, L., Cao, Z., Du, J., Zhou, C. and Jiang, P., 2021, “The correlation between structure and thermal properties of nickel-rich ternary cathode materials: a review”, Springer Link, 27, 3207-3217.
[18]Ebner, W., Fouchard, D. and Xie, L., 1994, “The LiNiO2/carbon lithium-ion battery”, Solid State Ionics, 69, 238-256.
[19]Bhobe, P. A., Majee, M. K. and Nigam, A. K., 2019, “Comparison of local crystal structure and magnetic properties of cation substituted LiNiO2 compositions”, Materials Research Bulletin, 116, 143-152.
[20]Chen, J., Zhang, T., Li, D. and Tao, Z., 2013, “Understanding electrode materials of rechargeable lithium batteries via DFT calculations”, Progress in Natural Science:Materials International, 23(3), 256-272.
[21]Mayyas, A. T., Jena, K. K. and AlFantazi, A., 2021, “Comprehensive Review on Concept and Recycling Evolution of Lithium-Ion Batteries (LIBs)”, energy and fuels, 35(22), 18257-18284.
[22]Tarascon, J. M. and Armand, M., 2001, “Issues and challenges facing rechargeable lithium batteries”, insight review articles, 414(15), 359-367.
[23]Yu, G., Peng, L., Zhu, Y., Khajoo, U. and Chen, D., 2015, “Self assembled LiNi1/3Co1/3Mn1/3O2 nanosheet cathodes with tunable rate capability”, Nano Energy, 17, 36-42.
[24]Iddir, H., Garcia, J. C., Bareño, J., Yan, J., Chen, G., Hauser, A. and Croy, J. R., 2017,” Surface Structure, Morphology and Stability of Li(Ni1/3Mn1/3Co1/3)O2 Cathode Material”, The Journal of Physical Chemistry C, 121(15), 8290-8299.
[25]Cui, D., Qi, W., Shapter, J. G. Wi, Q., Yin, T. and Gao, G., 2017, “Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives”, Journal of Materials Chemistry A, 5(37), 19521-19540.
[26]Li, S. and Mao, J., 2018, “The Influence of Different Types of Graphene on the Lithium Titanate Anode Materials of a Lithium Ion Battery”, Journal of Electronic Materials, 47, 5410-5416.
[27]Zhang, H., Yang, Y., Xu, H., Wang, L., Lu, X. and He, X., 2021, “Li4Ti5O12 spinel anode: Fundamentals and advances in rechargeable batteries”, Wiley Online Library, 4(4), e12228.
[28]Shajoor, R. A., Tariq, H. A., Nisar, U., Abraham, J. J., Ahmad, Z., AlQaradawi, S. and Kahraman, R., 2022, “TiO2 encrusted MXene as a High-Performance anode material for Li-ion batteries”, Applied Surface Science, 583, 152441.
[29]Paik, U. and Song, T., 2016, “TiO2 as an active or supplemental material for lithium batteries”, Journal of Materials Chemistry A, 1(4), 14-31.
[30]Hou, Y., Mahmood, N. and Tang, T., 2016, “Nanostructured Anode Materials for Lithium Ion Batteries: Progress, Challenge and Perspective”, Advanced Energy Materials, 6(17), 1600374.
[31]Wood, V., Lagadec, M. F. and Zahn, R., 2019, “ Characterization and performance evaluation of lithium-ion battery separators”, nature energy, 4, 16-25.
[32]Best, A. S., Francis, C. F. J. and Kyratzis, L. L., 2020, “Lithium-Ion Battery Separators for Ionic-Liquid Electrolytes:A Review”, Advanced Materials, 32, 1904205.
[33]Luiso, S. and Fedkiw, P., 2020, “Lithium-ion battery separators: Recent developments and state of art”, Current Opinion in Electrochemistry, 20, 99-107.
[34]Wang, Q., Jiang, L., Yu, Y. and Sun, J., 2019, “Progress of enhancing the safety of lithium ion battery from the electrolyte aspect”, Nano Energy, 55, 93-114.
[35]Zhang, S. S., 2006, “A review on electrolyte additives for lithium-ion batteries”, Journal of Power Sources, 162(2), 1379-1394.
[36]Snyders, C. D., Ferg, E. E., Schuelein, J. and Loewe, H., 2016, “A Review of using Spray Pyrolysis through Sol-gel Materials in the Synthesis of Cathode Materials for Lithium-ion Batteries”, Sabinet African Journals, 69, 88-97.
[37]Zemg,Y., 2020, “Hydrothermal Synthesis and Compositional Engineering of Lithium Iron Orthosilicate as Li-Ion Battery Cathode”, McGill University, 1-164.
[38]Wang, Y., Fu, F., Huang, Y., Wu, P., Bu, Y. and Yao, J., 2015, “Controlled synthesis of lithium-rich layered Li1.2Mn0.56Ni0.12Co0.12O2 oxide with tunable morphology and structure as cathode material for lithium-ion batteries by solvo/hydrothermal methods”, Journal of Alloys and Compounds, 618, 673-678.
[39]Taniguchi, I., Fukuda, N. and Konarova, M., 2008, “Synthesis of spherical LiMn2O4 microparticles by a combination of spray pyrolysis and drying method”, Powder Technology, 181(3), 228-236.
[40]Dahbi, M., Elmaataouy, E., Chari, A., Bendali, A. E., Tayoury, M., Amine, R., Aqil, M., Xu, G. and Alami, J., 2023, “LiNi0.8Fe0.1Al0.1O2 as a Cobalt-Free Cathode Material with High Capacity and High Capability for Lithium-Ion Batteries”, MDPI journal batteries, 9(1), 23.
[41]Huang, Y., Gao, M., Liu, N., Li, Z., Wang, W., Li, C., Zhang, H., Chen, Y. and Yu, Z., 2014, “A gelatin-based sol–gel procedure to synthesize the LiFePO4/C nanocomposite for lithium ion batteries”, Solid State Ionics, 258, 8-12.
[42]Xu, L., Zhou, F., Kong, J., Chen, Z. and Chen, K., 2017, “Synthesis of Li(Ni0.6Co0.2Mn0.2)O2 with sodium DL-lactate as an eco-friendly chelating agent and its electrochemical performances for lithium-ion batteries”, Springer Link, 24, 2261-2273.
[43]Thackeray, M. M. and Rossouw, M. H., 1991, “LITHIUM MANGANESE OXIDES FROM Li2MnO3 FOR RECHARGEABLE LITHIUM BA'ITERY APPLICATIONS”, Materials Research Bulletin, 26(6), 463-473.
[44]Li, N., Thackeray, M. M., Johnson, C. S., Vaughey, J. T. and Hackney, S. A., 2005, “Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries”, Journal of Materials, 15, 2257-2267.
[45]Croy, J. R., Kim, D., Balasubramanian, M., Gallagher, K., Kang, S. H. and Thackeray, M. M., 2012, “Countering the Voltage Decay in High Capacity xLi2MnO3•(1-x)LiMO2 Electrodes (M=Mn, Ni, Co) for Li+-Ion Batteries”, Journal of The Electrochemical Society, 159(6), A781-A790.
[46]Zhou, H and Yu, H., 2013, “High-Energy Cathode Materials (Li2MnO3−LiMO2) for Lithium-Ion Batteries”, The Journal of Physical Chemistry Letters, 4, 1268-1280.
[47]Thackeray, M. M., Johnson, C. S., Li, N., Vaughey, J. T. and Hackney, S. A., 2005, “Lithium–manganese oxide electrodes with layered–spinel composite structures xLi2MnO3 • (1 - x)Li1 + yMn2 - yO4 (0 < x < 1, 0 ≤ y ≤ 0.33) for lithium batteries”, Electrochemistry Communications, 7(5), 528-536.
[48]Luchkin, S. Y., Kirsanova, M. A., Aksyonov, D. A., Lipovskikh, S. A., Nikitina, V. A., Abakumov, A. M. and Stevenson, K. J., 2022, “Cycling-Driven Electrochemical Activation of Li-Rich NMC Positive Electrodes for Li-Ion Batteries”, ACS Applied Energy Materials, 5(6), 7758-7769.
[49]Li, Z., Wamg, B., Cui, J., Wang, H., Zhang, D., Wang, Q., Sun, H. and Hu, Z., 2022, “Surface F-doping for stable structure and high electrochemical performance of Li-rich Mn-based cathode materials”, Journal of Alloys and Compounds, 929, 167304.
[50]He, Y. B., Huang, C., Wang, Z., Wang, H., Huang, D. and Zhao, S. X., 2022, “Mg2+ doping into Li sites to improve anionic redox reversibility and thermal stability of lithium-rich manganese-based oxides cathode”, Materials Today Energy, 29, 101116.
[51]Hai, C., Dong, S., Zhou, Y., Zeng, J., Sun, Y., Shen, Y., Li, X., Ren, X., Sun, C., Zhang, G. and Wu, Z., 2020, “Understanding electrochemical performance improvement with Nb doping in lithium-rich manganese-based cathode materials”, Journal of Power Sources, 462, 228185.
[52]Zubair, M., Khan, M. I., Tufail, M. K., Iqbal, M. F., Fadhali, M. M., Hassan, A., Abd-Rabboh, H. S. M., Alshahrani, T., Ali, H. and Khan, M. R., 2023, “Stabilizing structure and voltage decay of lithium-rich cathode materials”, Ceramics International, 49(6), 8936-8944.
[53]Li, S., Li, C., Cai, X., Fu, X., Zhang, N., Ding, H., Wang, P., Zhou, X., Song, L., Huang, J. and Li, S., 2022, “Cation and polyanion co doping synergy to improve electrochemical performances of Li-rich manganese-based cathode materials”, Journal of Alloys and Compounds, 924, 166527.
[54]He, Y., Zhang, P., Zhai, X., Huang, H., Zhou, J., Li, X. and Guo, Z., 2020, “Synergistic Na+ and F− co-doping modification strategy to improve the electrochemical performance of Li-rich Li1.20Mn0.54Ni0.13Co0.13O2 cathode”, Ceramics International, 46(15), 24723-24736.
[55]He, Z., Zhou, Z., Luo, Z., Zheng, J., Li, Y., Yan, C. and Mao, J., 2021, “Suppress voltage decay of lithium-rich materials by coating layers with different crystalline states”, Journal of Energy Chemistry, 60, 591-598.
[56]Bai, Y., Zhang, X., Yin, Y., Hu, Y. and Wu, Q., 2016, “Zr-containing phosphate coating to enhance the electrochemical performances of Li-rich layer-structured Li[Li0.2Ni0.17Co0.07Mn0.56]O2”, Electrochimica Acta, 193, 96-103.
[57]Oishi, M., Yamanaka, K., Watanabe, I., Shimoda, K., Matsunaga, T., Arai, H., Ukyo, Y., Uchimoto, Y., Ogumi, Z. and Ohta, T., 2016, “Direct observation of reversible oxygen anion redox reaction in Li-rich manganese oxide, Li2MnO3, studied by soft X-ray absorption spectroscopy”, Joumal of Materials Chemistry A, 23(4), 9293-9302.
[58]Delmas, C., Rougier, A. and Gravereau, P., 1996, “Optimization of the Composition of the Li1 – z Ni1 + z O2 Electrode Materials: Structural, Magnetic, and Electrochemical Studies”, Journal of The Electrochemical Society, 143(4), 1168-1175.
[59]Wang, M., Liu, X., Yu, B., Jin, Y., Fu, Z., Chen, J., Ma, Z., Guo, B., Huang, Y. and Li, Xing., 2022, “Electrochemical performances of niobium-doped new spherical low-cobalt Li-rich Mn-based Li1.14Mn0.476Ni0.254Co0.048Al0.016O2 cathode”, Materials Today Communications, 32, 104170.
[60]Chen, L., Wang, D., Huang, Y. and Huo, Z., 2013, “Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material”, 107, 461-466.
[61]Wang, Z., Wang, D., Li, X., Guo, H., Xu, Y., Fan, Y. and Pan, W., 2016, “Effect of surface fluorine substitution on high voltage electrochemical performances of layered LiNi0.5Co0.2Mn0.3O2 cathode materials”, Applied Surface Science, 371, 172-179.
[62]Deng, Y., Bao, Y., Wang, J., Qian, Y., Yang, X. and Chen, G., 2020, “An appropriate amount of new spinel phase induced by control synthesis for the improvement of electrochemical performance of Li-rich layered oxide cathode material”, Electrochimica Acta, 330, 135240.
[63]Bruce, P. G., Armstrong, A. R., Holzapfel, M., Novảk, P., Johnson, C. S., Kang, S. H. and Thackeray, M. M., 2006, “Demonstrating Oxygen Loss and Associated Structural Reorganization in the Lithium Battery Cathode Li[Ni0.2Li0.2Mn0.6]O2”, Journal of The American Chemical Society,128(26), 8694-8698.
[64]Li, G. R., Cui, S. L., Zhang, X., Wu, X. W., Liu, S., Zhou, Z. and Gao, X. P., 2020, “Understanding the Structure–Performance Relationship of Lithium-Rich Cathode Materials from an Oxygen -Vacancy Perspective”, ACS Applied Materials and Interfaces, 12(42), 47655-47666.
[65]Hai, C., Dong, S., Zhou, Y., Zeng, J., Sun, Y., Shen, Y., Li, X., Ren, X., Sun, C., Zhang, G. and Wu, Z., “Understanding electrochemical performance improvement with Nb doping in lithium-rich manganese-based cathode materials”, Journal of Power Sources, 462, 228185.
[66]Chen, L., Wang, D., Huang, Y. and Huo, Z., 2013, “Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material”, Electrochimica Acta, 107, 461-466.
[67]Kang, S. H., Song, J. H., Kapylou, A., Choi, H. S., Yu, B. Y. and Matulevich., 2016, “Suppression of irreversible capacity loss in Li -rich layered oxide by fluorine doping”, Journal of Power Sources, 313, 65-72.
[68]Iskandar, F., Suryadi, P. N., Karunawan, J. and Floweri, O., 2023, “Toward high-rate capability of intercalation cathodes Li-ion batteries, potency for fast-charging application: A materials perspective”, Journal of Energy Storage, 68, 107634.
[69]Lai, Y., Li, S., Li, H., Zhang, H., Zhang, S. and Zhang, Z., 2022, “Constructing stableChen, surface structures enabling fast charging for Li-rich layered oxide cathodes”, Chemical Engineering Journal, 427, 132036.
[70]Lee, S. H., Moon, J. S., Lee, M. S., Yu, T. H., Kim, H. and Park, B. M., 2015, “Enhancing phase stability and kinetics of lithium-rich layered oxide for an ultra-high performing cathode in Li-ion batteries”, Journal of Power Sources, 281, 77-84.
[71]Chen, C. H., Ding, X., Xiao, L. N., Li, Y. X., Tang, Z. F., Wan, J. W. and Wen, Z. Y., 2018, “Improving the electrochemical performance of Li-rich Li1.2Ni0.2Mn0.6O2 by using Ni-Mn oxide surface modification”, Journal of Power Sources, 390, 13-19.
[72]Peralta, D., Colin, J. F., Boulineau, A., Simonin, L., Fabre, F., Bouvet, J., Feydi, P., Chakir, M., Chapuis, M. and Patoux, S., 2015, “Role of the composition of lithium-rich layered oxide materials on the voltage decay”, Journal of Power Sources, 280, 687-694.
[73]Zhang, S., Li, H., Jian, Z., Yang, P., Li, J. and Xing, Y., 2020, “Niobium doping of Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials with enhanced structural stability and electrochemical performance”, Ceramics International, 46(15), 23773-23779.
[74]Chen, M., Zhang, G., Li, C., Wu, B., Chen, J., Xiang, W., Wen, X., Zhang, D., Cao, G. and Li, W., 2022, “Surface spinel and interface oxygen vacancies enhanced lithium-rich layered oxides with excellent electrochemical performances”, Chemical Engineering Journal, 443, 136434.
[75]Gu, H. T., Wang, Y., Song, J. H., Feng, Z. H., Zhou, X. B., Zhou, Y. N., Wang, K. and Xie, J. Y., 2018, “Suppressing Mn Reduction of Li-Rich Mn-Based Cathodes by F‑Doping for Advanced Lithium-Ion Batteries”, The Journal of Physical Chemistry C, 122(49), 27836-27842.
[76]Majumder, S. B., Dahiya, P. P., Ghanty, C., Sahoo, K. and Basu, S., 2018, “Suppression of Voltage Decay and Improvement in Electrochemical Performance by Zirconium Doping in Li-Rich Cathode Materials for Li-Ion Batteries”, Journal of The Electrochemical Society, 165(13), A3114-A3124.
[77]Thomas, J. O., Edström, K. and Gustafsson, T., 2004, “The cathode–electrolyte interface in the Li-ion battery”, Electrochimica Acta, 50, 397-403.
[78]Lu, L., Li, L., Song, B. H., Chang, Y. L., Xia, H., Yang, J. R. and Lee, K. S., 2015, “Retarded phase transition by fluorine doping in Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material”, Journal of Power Sources, 283, 162-170.
[79]He, Y. B., Huang, C., Wang, Z., Wang, H., Huang, D. and Zhao, S. X., 2022, “Mg2+ doping into Li sites to improve anionic redox reversibility and thermal stability of lithium-rich manganese-based oxides cathode”, Materials Today Energy, 29, 101116.
[80]Yeon, S. H., Lim, S. N., Seo, J. Y., Jung, D. S. and Park, S. B., 2015, “The crystal structure and electrochemical performance of Li1.167Mn0.548Ni0.18Co0.105O2 composite cathodes doped and co-doped with Mg and F”, Journal of Electroanalytical Chemistry, 740, 88-94.
[81]Zhuang, W., Liu, Y., Wang, Z., Zhuo, H. and Lu, S., 2020, “Heating-temperature-dependent electrochemical-performance-enhanced surface structural evolution during chemical treatment of Li-rich layered material by sodium thiosulfate”, Journal of Power Sources, 455, 227795.
[82]Chen, L., Su, Y., Yuan, F., Lu, Y., Dong, J., Fang, Y., Chen, S. and Wu, F., 2020, “Enhanced high-temperature performance of Li-rich layered oxide viasurface heterophase coating”, Journal of Energy Chemistry, 51, 39-47.
[83]Wang, H., Guo, Z., Li, L., Su, Z., Peng, G., Qu, M., Fu, Y. and Ge, W., 2023, “Enhancing cyclic performance of lithium-rich manganese-based cathode viain-situ co-doping of magnesium and fluorine”, Electrochimica Acta, 437, 141525.
[84]Li, X., Huang, Z., Liang, Y., He, Z., Chen, H., Wang, Z. an Guo, H., 2015, “Structural and electrochemical characterization of Mg-doped Li1.2[Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion batteries”, Solid State Ionics, 282, 88-94.
[85]Zhou, Y. N., Wang, Y., Gu, H. T., Song, J. H., Feng, Z. H., Zhou, X. B., Wang, K. and Xie, J. Y., 2018, “Suppressing Mn Reduction of Li-Rich Mn-Based Cathodes by F‑Doping for Advanced Lithium-Ion Batteries”, The Journal of Physical Chemistry C, 122, 27836-27842.
[86]Makhonina, E., Pechen, L., Medvedeva, A., Politov, Y., Rumyantsev, A., Koshtyal, Y., Volkov, V., Goloveshkin, A. and Eremenko, I., 2022, “Effects of Mg Doping at Different Positions in Li-Rich Mn-Based Cathode Material on Electrochemical Performance”, Nanomaterials, 12(1), 156.
[87]Li, Z., Wang, B., Cui, J., Wang, H., Zhang, D., Wang, Q., Sun, H. and Hu, Z., 2022, “Surface F-doping for stable structure and high electrochemical performance of Li-rich Mn-based cathode materials”, Journal of Alloys and Compounds, 929, 167304.
|