|
[1]M. S. Shur and R. Zukauskas. "Solid-State Lighting: Toward Superior Illumination", Proceedings of the IEEE, 93, 1691-1703, 2005. [2]A. M. Srivastava and T. J. Sommerer. "Fluorescent Lamp Phosphors", The Electrochem. Soc. Interface, 7, 28-31, 1998. [3]C. Guo and H. Suo. "Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications", 15, 459-508, Springer-Verlag Berlin Heidelberg, 2017. [4]H. Li, X. Jiang, A. Wang, X. Chu, and Z. Du. "Simple Synthesis of CuInS2/ZnS Core/Shell Quantum Dots for White Light-Emitting Diodes", Front. Chem., 8, 669, 2020. [5]C. F. Lai, J. S. Li, and C. W. Shen. "High-Efficiency Robust Free-Standing Composited Phosphor Films with 2D and 3D Nanostructures for High-Power Remote White LEDs", ACS Appl. Mater. Interfaces, 9, 4851-4859, 2017. [6]P. J. Yadav, C. P. Joshi, and S. V. Moharil. "Two phosphor converted white LED with improved CRI", J. Lumin., 136, 1-4, 2013. [7]J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu. "White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors", IEEE Photonics Technol. Lett., 15, 18-20, 2003. [8]S. K. Kwak, T. W. Yoo, B.-S. Kim, S. M. Lee, Y. S. Lee, and L. S. Park. "White LED Packaging with Layered Encapsulation of Quantum Dots and Optical Properties", Molecular Crystals and Liquid Crystals, 564, 33-41, 2012. [9]K. A. Denault, A. A. Mikhailovsky, S. Brinkley, S. P. DenBaars, and R. Seshadri. "Improving color rendition in solid state white lighting through the use of quantum dots", J. Mater. Chem. C, 1, 1461-1466, 2013. [10]Y. Xu, T. Chen, Z. Xie, W. Jiang, L. Wang, W. Jiang, and X. Zhang. "Highly efficient Cu-In-Zn-S/ZnS/PVP composites based white light-emitting diodes by surface modulation", Chemical Engineering J., 403, 126372, 2021. [11]W. Chung, H. Jung, C. H. Lee, and S. H. Kim. "Warm with high color rendering index white light from hybridization of Ca2BO3Cl:Eu2+ yellow phosphor and CdSe/ZnS nanocrystals", J. Industrial and Engineering Chem., 19, 1743-1746, 2013. [12]K. Jayanthi, S. Chawla, H. Chander, and D. Haranath. "Structural, optical and photoluminescence properties of ZnS: Cu nanoparticle thin films as a function of dopant concentration and quantum confinement effect", Crystal Research and Technology, 42, 976-982, 2007. [13]A. H. Ip, A. Kiani, I. J. Kramer, O. Voznyy, H. F. Movahed, L. Levina, M. M. Adachi, S. Hoogland, and E. H. Sargent. "Infrared Colloidal Quantum Dot Photovoltaics via Coupling Enhancement and Agglomeration Suppression", ACS Nano, 9, 8833-42, 2015. [14]M. Kong, A. Osvet, A. Barabash, K. Zhang, H. Hu, J. Elia, C. Erban, T. Yokosawa, E. Spiecker, M. Batentschuk, and C. J. Brabec. "AgIn5S8/ZnS Quantum Dots for Luminescent Down-Shifting and Antireflective Layer in Enhancing Photovoltaic Performance", ACS Appl. Mater. & Interfaces, 15, 52746-52753, 2023. [15]R. Kottayi, V. Ilangovan, and R. Sittaramane. "Cu2AgInS4 quantum dot sensitized zinc doped Titania nanoparticles film as the high efficient photoanode for photovoltaic cells", Optik, 255, 168692, 2022. [16]Y. You, X. Tong, A. Imran Channa, H. Zhi, M. Cai, H. Zhao, L. Xia, G. Liu, H. Zhao, and Z. Wang. "High-efficiency luminescent solar concentrators based on Composition-tunable Eco-friendly Core/shell quantum dots", Chem. Engineering J., 452, 139490, 2023. [17]M. Zhu, Y. Li, S. Tian, Y. Xie, X. Zhao, and X. Gong. "Deep-red emitting zinc and aluminium co-doped copper indium sulfide quantum dots for luminescent solar concentrators", J. Colloid Interface Sci., 534, 509-517, 2019. [18]Z. Fang, Y. Huang, S. Cheng, Q. Zhu, W. Zhang, F. Zhao, G. Huang, G. Jiang, and F. Li. "Quaternary alloyed quantum dots with a wide-ranging tunable emission for high color-rendering white light-emitting diodes", J. Alloys and Compounds, 932, 167608, 2023. [19]J.-H. Kim, C. Y. Han, K. H. Lee, K. S. An, W. Song, J. Kim, M. S. Oh, Y. R. Do, and H. Yang. "Performance Improvement of Quantum Dot-Light-Emitting Diodes Enabled by an Alloyed ZnMgO Nanoparticle Electron Transport Layer", Chem. Mater., 27, 197-204, 2014. [20]Q. Li, J. Bai, M. Huang, L. Li, X. Liao, L. Wang, B. Xu, and X. Jin. "High-performance, environmentally friendly solid-phase color converted-based quantum dots white light-emitting diodes", J. Lumin., 255, 119560, 2023. [21]G. Motomura, T. Uematsu, S. Kuwabata, T. Kameyama, T. Torimoto, and T. Tsuzuki. "Quantum-Dot Light-Emitting Diodes Exhibiting Narrow-Spectrum Green Electroluminescence by Using Ag-In-Ga-S/GaSx Quantum Dots", ACS Appl. Mater. Interfaces, 15, 8336-8344, 2023. [22]X. Yang, E. Mutlugun, C. Dang, K. Dev, Y. Gao, S. T. Tan, X. W. Sun, and H. V. Demir. "Highly flexible, electrically driven, top-emitting, quantum dot light-emitting stickers", ACS Nano, 8, 8224-31, 2014. [23]M. Guo, X. Gu, B. Yang, L. He, J. Yang, and Y. Yan. "Highly sensitive detection for tetracycline residues in water based on its decreasing effect on photocurrent of AgInS2 quantum dots", J. Environmental Chem. Engin., 10, 107714, 2022. [24]Q. Jin, X. Zhang, L. Zhang, J. Li, Y. Lv, N. Li, L. Wang, R. Wu, and L. S. Li. "Fabrication of CuInZnS/ZnS Quantum Dot Microbeads by a Two-Step Approach of Emulsification-Solvent Evaporation and Surfactant Substitution and Its Application for Quantitative Detection", Inorg. Chem., 62, 3474-3484, 2023. [25]V. Ncapayi, O. Famutimi, T. C. Lebepe, R. Maluleke, S. Masha, N. Mgedle, S. Parani, T. Kodama, I. O. Adewale, and O. S. Oluwafemi. "Large-scale synthesis of CISe/ZnS core-shell quantum dots and its effects on the enzymatic activity of recombinant human furin (an activator of SARS-COV-2 S1/S2 spike proteins)", Colloid and Interface Sci. Comm., 56, 4482-4488, 2023. [26]X. Sun, X. Huang, J. Guo, W. Zhu, Y. Ding, G. Niu, A. Wang, D. O. Kiesewetter, Z. L. Wang, S. Sun, and X. Chen. "Self-illuminating 64Cu-doped CdSe/ZnS nanocrystals for in vivo tumor imaging", J. Am. Chem. Soc., 136, 1706-1709, 2014. [27]Z. Ye, Y. Liu, M. Pan, X. Tao, Y. Chen, P. Ma, Y. Zhuo, and D. Song. "AgInZnS quantum dots as anodic emitters with strong and stable electrochemiluminescence for biosensing application", Biosens Bioelectron, 228, 115219, 2023. [28]Z. Hu, T. Chen, Z. Xie, C. Guo, W. Jiang, Y. Chen, and Y. Xu. "Emission tunable AgInS2 quantum dots synthesized via microwave method for white light-emitting diodes application", Optical Mater., 124, 111972, 2022. [29]W. Li, Z. Pan, and X. Zhong. "CuInSe2 and CuInSe2–ZnS based high efficiency “green” quantum dot sensitized solar cells", J. Mater. Chem. A, 3, 1649-1655, 2015. [30]J. Wei, F. Li, C. Chang, and Q. Zhang. "Synthesis of emission tunable AgInS2/ZnS quantum dots and application for light emitting diodes", J. Phys. Commun., 4, 045046, 2020. [31]W.-J. Zhang, C.-Y. Pan, F. Cao, and X. Yang. "White-light-emitting Cu,Mn co-doped Zn–In–S/ZnS quantum dots with high stability and their electroluminescence", J. Mater. Chem. C, 5, 10533-10542, 2017. [32]T. Chen, X. Hu, Y. Xu, L. Wang, W. Jiang, W. Jiang, and Z. Xie. "Hydrothermal synthesis of highly fluorescent Ag–In–S/ZnS core/shell quantum dots for white light-emitting diodes", J. Alloys and Compounds, 804, 119-127, 2019. [33]Z. Hu, H. Lu, W. Zhou, J. Wei, H. Dai, H. Liu, Z. Xiong, F. Xie, W. Zhang, and R. Guo. "Aqueous synthesis of 79% efficient AgInGaS/ZnS quantum dots for extremely high color rendering white light-emitting diodes", J. Mater. Sci. & Technol., 134, 189-196, 2023. [34]P. M. Allen and M. G. Bawendi. "Ternary I-III-VI quantum dots luminescent in the red to near-infrared", J. Am. Chem. Soc., 130, 9240-1, 2008. [35]X. Dong, J. Ren, T. Li, and Y. Wang. "Synthesis, characterization and application of red-emitting CuInS2/ZnS quantum dots for warm white light-emitting diodes", Dyes and Pigments, 165, 273-278, 2019. [36]S. Ghosh, S. Mandal, S. Mukherjee, C. K. De, T. Samanta, M. Mandal, D. Roy, and P. K. Mandal. "Near-Unity Photoluminescence Quantum Yield and Highly Suppressed Blinking in a Toxic-Metal-Free Quantum Dot", J. Phys. Chem. Lett., 12, 1426-1431, 2021. [37]S. Zang, X. Zhang, Y. Sun, N. Li, L. Wang, and L. S. Li. "Ligand-assisted structure tailoring of highly luminescent Cu-In-Zn-S/ZnS//ZnS quantum dots for bright and stable light-emitting diodes", Front. Chem., 10, 1102514, 2022. [38]J. C. Amaral-Júnior, A. A. P. Mansur, I. C. Carvalho, and H. S. Mansur. "Tunable luminescence of Cu-In-S/ZnS quantum dots-polysaccharide nanohybrids by environmentally friendly synthesis for potential solar energy photoconversion applications", Appl. Surface Sci., 542, 148701, 2021. [39]A. S. Ebaid, A. A. El-Hamalawy, M. M. ElKholy, S. Ebrahim, and J. El Nady. "CuInS/ZnS quantum dots-sensitized solar cells by introducing ZnS passivation layer", J. Mater. Sci.: Mater. in Electronics, 34, 1968, 2023. [40]Y. Li, J. Liu, X. Li, X. Wan, R. Pan, H. Rong, J. Liu, W. Chen, and J. Zhang. "Evolution of Hollow CuInS2 Nanododecahedrons via Kirkendall Effect Driven by Cation Exchange for Efficient Solar Water Splitting", ACS Appl. Mater. Interfaces, 11, 27170-27177, 2019. [41]J. Zhang, A. Bifulco, P. Amato, C. Imparato, and K. Qi. "Copper indium sulfide quantum dots in photocatalysis", J. Colloid Interface Sci., 638, 193-219, 2023. [42]Z. Lin, X. Fei, Q. Ma, X. Gao, and X. Su. "CuInS2 quantum dots@silica near-infrared fluorescent nanoprobe for cell imaging", New J. Chem., 38, 90-96, 2014. [43]S. Safari, A. Amiri, and A. Badiei. "Selective detection of aspartic acid in human serum by a fluorescent probe based on CuInS2@ZnS quantum dots", Spectrochim Acta A Mol Biomol Spectrosc, 291, 122294, 2023. [44]A. D. Leach and J. E. Macdonald. "Optoelectronic Properties of CuInS2 Nanocrystals and Their Origin", J. Phys. Chem. Lett., 7, 572-83, 2016. [45]D. E. Nam, W. S. Song, and H. Yang. "Facile, air-insensitive solvothermal synthesis of emission-tunable CuInS2/ZnS quantum dots with high quantum yields", J. Mater. Chem., 21, 18220-18226, 2011. [46]Y. Chen, S. Li, L. Huang, and D. Pan. "Green and facile synthesis of water-soluble Cu-In-S/ZnS core/shell quantum dots", Inorg. Chem., 52, 7819-7821, 2013. [47]K. Nose, N. Fujita, T. Omata, S. Otsuka-Yao-Matsuo, W. Kato, M. Uehara, H. Nakamura, H. Maeda, H. Kamioka, and H. Hosono. "Photoluminescence of CuInS2-based semiconductor quantum dots; Its origin and the effect of ZnS coating", J. Physics: Conference Series, 165, 012028, 2009. [48]W.-S. Song, J.-H. Kim, and H. Yang. "Silica-embedded quantum dots as downconverters of light-emitting diode and effect of silica on device operational stability", Mater. Lett., 111, 104-107, 2013. [49]B. Chen, H. Zhong, W. Zhang, Z. Tan, Y. Li, C. Yu, T. Zhai, Y. Bando, S. Yang, and B. Zou. "Highly Emissive and Color‐Tunable CuInS2‐Based Colloidal Semiconductor Nanocrystals: Off‐Stoichiometry Effects and Improved Electroluminescence Performance", Adv. Functional Mater., 22, 2081-2088, 2012. [50]S. Jain, S. Bharti, G. K. Bhullar, and S. K. Tripathi. "Synthesis, characterization and stability study of aqueous MPA capped CuInS2/ZnS core/shell nanoparticles", J. Lumin., 252, 273-278, 2022. [51]S. Mei, J. Zhu, W. Yang, X. Wei, W. Zhang, Q. Chen, L. He, Y. Jiang, and R. Guo. "Tunable emission and morphology control of the Cu-In-S/ZnS quantum dots with dual stabilizer via microwave-assisted aqueous synthesis", J. Alloys and Compounds, 729, 1-8, 2017. [52]J. Ma, M. Liu, Z. Li, and L. Li. "Synthesis of highly photo-stable CuInS2/ZnS core/shell quantum dots", Optical Mater., 47, 56-61, 2015. [53]Z. Long, W. Zhang, J. Tian, G. Chen, Y. Liu, and R. Liu. "Recent research on the luminous mechanism, synthetic strategies, and applications of CuInS2 quantum dots", Inorg. Chem. Frontiers, 8, 880-897, 2021. [54]P. K. Singha, T. Kistwal, and A. Datta. "Single-Particle Dynamics of ZnS Shelling Induced Replenishment of Carrier Diffusion for Individual Emission Centers in CuInS2 Quantum Dots", J. Phys. Chem. Lett., 14, 4289-4296, 2023. [55]S. Mukherjee, J. Selvaraj, and T. Paramasivam. "Ag-Doped ZnInS/ZnS Core/Shell Quantum Dots for Display Applications", ACS Applied Nano Mater., 4, 10228-10243, 2021. [56]H. S. Shim, M. Ko, S. Jeong, S. Y. Shin, S. M. Park, Y. R. Do, and J. K. Song. "Enhancement Mechanism of Quantum Yield in Alloyed-Core/Shell Structure of ZnS–CuInS2/ZnS Quantum Dots", J. Phys. Chem. C, 125, 9965-9972, 2021. [57]J. Wei, Z. Hu, W. Zhou, Y. Qiu, H. Dai, Y. Chen, Z. Cui, S. Liu, H. He, W. Zhang, F. Xie, and R. Guo. "Emission tuning of highly efficient quaternary Ag-Cu-Ga-Se/ZnSe quantum dots for white light-emitting diodes", J. Colloid Interface Sci., 602, 307-315, 2021. [58]A. Bora, J. Lox, R. Hübner, N. Weiß, H. Bahmani Jalali, F. di Stasio, C. Steinbach, N. Gaponik, and V. Lesnyak. "Composition-Dependent Optical Properties of Cu–Zn–In–Se Colloidal Nanocrystals Synthesized via Cation Exchange", Chem. Mater., 35, 4068-4077, 2023. [59]L. De Trizio, M. Prato, A. Genovese, A. Casu, M. Povia, R. Simonutti, M. J. P. Alcocer, C. D’Andrea, F. Tassone, and L. Manna. "Strongly Fluorescent Quaternary Cu–In–Zn–S Nanocrystals Prepared from Cu1-xInS2 Nanocrystals by Partial Cation Exchange", Chem. Mater., 24, 2400-2406, 2012. [60]Y. Qin, H. Zhang, Q. Yuan, H. Zhang, J. Ning, and W. Ji. "Composition-Controlled Synthesis of Nonstochiometric AgInZnS Nanocrystals for Green Light-Emitting Diodes", ACS Appl. Nano Mater., 5, 13553-13560, 2022. [61]S. Cao, C. Li, L. Wang, M. Shang, G. Wei, J. Zheng, and W. Yang. "Long-lived and well-resolved Mn2+ ion emissions in CuInS-ZnS quantum dots", Sci. Rep., 4, 7510, 2014. [62]J. Hua, Y. Zhang, X. Yuan, H. Cheng, X. Meng, J. Zhao, and H. Li. "Photoluminescence properties of Cu–Mn–In–S/ZnS core/shell quantum dots", Superlattices and Microstructures, 73, 214-223, 2014. [63]R. Sakai, H. Onishi, S. Ido, and S. Furumi. "Effective Mn-Doping in AgInS2/ZnS Core/Shell Nanocrystals for Dual Photoluminescent Peaks", Nanomaterials, 9, 263, 2019. [64]H. C. Yoon, J. H. Oh, M. Ko, H. Yoo, and Y. R. Do. "Synthesis and characterization of green Zn-Ag-In-S and red Zn-Cu-In-S quantum dots for ultrahigh color quality of down-converted white LEDs", ACS Appl. Mater. Interfaces, 7, 7342-50, 2015. [65]T. Chen, Y. Ren, Y. Xu, W. Jiang, L. Wang, W. Jiang, and Z. Xie. "Room-temperature ionic-liquid-assisted hydrothermal synthesis of Ag-In-Zn-S quantum dots for WLEDs", J. Alloys and Compounds, 858, 158084, 2021. [66]C. Sun, Y. Zhang, Y. Wang, W. Liu, S. Kalytchuk, S. V. Kershaw, T. Zhang, X. Zhang, J. Zhao, W. W. Yu, and A. L. Rogach. "High color rendering index white light emitting diodes fabricated from a combination of carbon dots and zinc copper indium sulfide quantum dots", Appl. Phy. Lett., 104, 261106, 2014. [67]D. Pan, L. An, Z. Sun, W. Hou, Y. Yang, Z. Yang, and Y. Lu. "Synthesis of Cu-In-S ternary nanocrystals with tunable structure and composition", J. Am. Chem. Soc., 130, 5620-1, 2008. [68]K. Nose, Y. Soma, T. Omata, and S. Otsuka-Yao-Matsuo. "Synthesis of Ternary CuInS2 Nanocrystals; Phase Determination by Complex Ligand Species", Chem. Mater., 21, 2607-2613, 2009. [69]S. Shishodia, B. Chouchene, T. Gries, and R. Schneider. "Selected I-III-VI2 Semiconductors: Synthesis, Properties and Applications in Photovoltaic Cells", Nanomaterials, 13, 37947733, 2023. [70]R. Jose Varghese and O. S. Oluwafemi. "The Photoluminescence and Biocompatibility of CuInS2-Based Ternary Quantum Dots and Their Biological Applications", Chemosensors, 8, 101, 2020. [71]X. Wang, Z. Liang, X. Xu, N. Wang, J. Fang, J. Wang, and G. Xu. "A high efficient photoluminescence Zn–Cu–In–S/ZnS quantum dots with long lifetime", J. Alloys and Compounds, 640, 134-140, 2015. [72]W. van der Stam, M. de Graaf, S. Gudjonsdottir, J. J. Geuchies, J. J. Dijkema, N. Kirkwood, W. H. Evers, A. Longo, and A. J. Houtepen. "Tuning and Probing the Distribution of Cu+ and Cu2+ Trap States Responsible for Broad-Band Photoluminescence in CuInS2 Nanocrystals", ACS Nano, 12, 11244-11253, 2018. [73]Z. M. Hu, G. T. Fei, and L. D. Zhang. "Synthesis of green-to-red-emitting Cu-Ga-S/ZnS core/shell quantum dots for application in white light-emitting diodes", J. Lumin., 208, 18-23, 2019. [74]S. H. Park, A. Hong, J. H. Kim, H. Yang, K. Lee, and H. S. Jang. "Highly bright yellow-green-emitting CuInS2 colloidal quantum dots with core/shell/shell architecture for white light-emitting diodes", ACS Appl. Mater. Interfaces, 7, 6764-71, 2015. [75]C. Ruan, Y. Zhang, M. Lu, C. Ji, C. Sun, X. Chen, H. Chen, V. L. Colvin, and W. W. Yu. "White Light-Emitting Diodes Based on AgInS2/ZnS Quantum Dots with Improved Bandwidth in Visible Light Communication", Nanomaterials, 6, 13, 2016. [76]S. Y. Yoon, J. H. Kim, K. H. Kim, C. Y. Han, J. H. Jo, D. Y. Jo, S. Hong, J. Y. Hwang, Y. R. Do, and H. Yang. "High-efficiency blue and white electroluminescent devices based on non-Cd I−III−VI quantum dots", Nano Energy, 63, 103869, 2019. [77]S. Y. Yoon, Y. H. Kim, D. Y. Jo, J. H. Jo, S. H. Lee, H. M. Kim, Y. Kim, S. K. Kim, and H. Yang. "Efficient synthesis of multinary Zn-Cu-Ga-Se1−xSx quantum dots as full visible-covering emitters and their tricolored white electroluminescence", Chem. Engin. J., 410, 128426, 2021. [78]S. R. Chung, K. W. Wang, and M. W. Wang. "Hybrid YAG/CdSe quantum dots phosphors for white light-emitting diodes", J. Nanosci. Nanotechnol., 13, 4358-63, 2013. [79]N. Reitinger, A. Hohenau, S. Köstler, J. R. Krenn, and A. Leitner. "Radiationless energy transfer in CdSe/ZnS quantum dot aggregates embedded in PMMA", physica status solidi, 208, 710-714, 2010. [80]D. J. Dunstan. "Evidence for a common origin of the Urbach tails in amorphous and crystalline semiconductors", J. Phys. C: Solid State Physics, 30, 419-424, 1982. [81]Q. A. Akkerman, A. Genovese, C. George, M. Prato, I. Moreels, A. Casu, S. Marras, A. Curcio, A. Scarpellini, T. Pellegrino, L. Manna, and V. Lesnyak. "From Binary Cu2S to ternary Cu-In-S and quaternary Cu-In-Zn-S nanocrystals with tunable composition via partial cation exchange", ACS Nano, 9, 521-531, 2015. [82]Z. Liu, A. Tang, M. Wang, C. Yang, and F. Teng. "Heating-up synthesis of cadimum-free and color-tunable quaternary and five-component Cu–In–Zn–S-based semiconductor nanocrystals", J. Mater.Chem. C, 3, 10114-10120, 2015. [83]L. Wang, Z. Guan, Z. Liu, O. Lin, W. Cui, Z. Yin, and A. Tang. "Seed-mediated growth of gradient Cu–In–Zn–S alloyed nanocrystals by balancing cation exchange and shelling reaction", J. Lumin., 257, 119656, 2023. [84]W. Xiang, X. Ma, L. Luo, W. Cai, C. Xie, and X. Liang. "Facile synthesis and characterization of core/shell Cu–In–Zn–S/ZnS nanocrystals with high luminescence", Mater. Chem. and Phys., 149-150, 437-444, 2015. [85]Z. Liu, Z. Guan, X. Li, A. Tang, and F. Teng. "Rational Design and Synthesis of Highly Luminescent Multinary Cu‐In‐Zn‐S Semiconductor Nanocrystals with Tailored Nanostructures", Adv. Optical Mater., 8, 190155, 2020. [86]P. J. Whitham, A. Marchioro, K. E. Knowles, T. B. Kilburn, P. J. Reid, and D. R. Gamelin. "Single-Particle Photoluminescence Spectra, Blinking, and Delayed Luminescence of Colloidal CuInS Nanocrystals", J. Phys. Chem. C, 120, 17136-17142, 2016. [87]K. Qi, X. Xing, A. Zada, M. Li, Q. Wang, S.-y. Liu, H. Lin, and G. Wang. "Transition metal doped ZnO nanoparticles with enhanced photocatalytic and antibacterial performances: Experimental and DFT studies", Ceramics International, 46, 1494-1502, 2020. [88]S. Cao, W. Ji, J. Zhao, W. Yang, C. Li, and J. Zheng. "Color-tunable photoluminescence of Cu-doped Zn–In–Se quantum dots and their electroluminescence properties", J. Mater. Chem. C, 4, 581-588, 2016. [89]C. Xia, J. D. Meeldijk, H. C. Gerritsen, and C. de Mello Donega. "Highly Luminescent Water-Dispersible NIR-Emitting Wurtzite CuInS2/ZnS Core/Shell Colloidal Quantum Dots", Chem. Mater., 29, 4940-4951, 2017. [90]Z. Guan, A. Tang, P. Lv, Z. Liu, X. Li, Z. a. Tan, T. Hayat, A. Alsaedi, C. Yang, and F. Teng. "New Insights into the Formation and Color‐Tunable Optical Properties of Multinary Cu‐In‐Zn‐Based Chalcogenide Semiconductor Nanocrystals", Adv. Optical Mater., 6, 1701389, 2018. [91]T. Kim, C. Yoon, Y. G. Song, Y. J. Kim, and K. Lee. "Thermal stabilities of cadmium selenide and cadmium-free quantum dots in quantum dot-silicone nanocomposites", J. Lumin., 177, 54-58, 2016. [92]D. Cai, X. Yuan, D. Zhu, H. Zhou, H. Li, and J. Zhao. "Al-doped ZnS shell as a surface shield for enhancing the stability of Cu:ZnInS/ZnS/ZnS:Al quantum dots and their application in light emitting diodes", Mater. Research Bulletin, 94, 241-246, 2017. [93]J. H. Kim, E. P. Jang, Y. Kwon, H. S. Jang, Y. R. Do, and H. Yang. "Enhanced fluorescent stability of copper indium sulfide quantum dots through incorporating aluminum into ZnS shell", J. Alloys and Compounds, 662, 173-178, 2016. [94]P. Rao, W. Yao, Z. Li, L. Kong, W. Zhang, and L. Li. "Highly stable CuInS2@ZnS:Al core@shell quantum dots: the role of aluminium self-passivation", Chem. Commun., 51, 8757-60, 2015. [95]L. Qinghua, B. Jinke, B. Cuiying, C. Zimei, H. Jiyan, N. Xuerong, J. Xiao, and X. Bing. "Extensive emission tuning and characterization of highly efficient CuInS2 quantum dots for white light-emitting diodes", Optics Express, 31, 36691-36701, 2023. [96]Y. Jia, H. Wang, L. Xiang, X. Liu, W. Wei, N. Ma, and D. Sun. "Tunable emission properties of core-shell ZnCuInS-ZnS quantum dots with enhanced fluorescence intensity", J. Mater. Sci. & Techno. 34, 942-948, 2018. [97]R. Wu, T. Wang, M. Wu, Y. Lv, X. Liu, J. Li, H. Shen, and L. S. Li. "Synthesis of highly stable CuInZnS/ZnS//ZnS quantum dots with thick shell and its application to quantitative immunoassay", Chem. Engineering J., 348, 447-454, 2018. [98]X. Zhang, T. Wang, Q. Lin, F. Chen, L. Wang, and Z. Du. "Highly efficient near-infrared light-emitting diodes based on Zn:CuInSe2ZnS//ZnS quantum dots with double shell engineering", Opt. Express, 30, 29449-29460, 2022.
|