|
(1)Kalair, A.; Abas, N.; Saleem, M. S.; Kalair, A. R.; Khan, N. Role of Energy Storage Systems in Energy Transition from Fossil Fuels to Renewables. Energy Storage 2021, 3 (1). https://doi.org/10.1002/est2.135. (2)Holechek, J. L.; Geli, H. M. E.; Sawalhah, M. N.; Valdez, R. A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability (Switzerland) 2022, 14 (8). https://doi.org/10.3390/su14084792. (3)Islami, M. S.; Urmee, T.; Kumara, I. N. S. Developing a Framework to Increase Solar Photovoltaic Microgrid Penetration in the Tropical Region: A Case Study in Indonesia. Sustainable Energy Technologies and Assessments 2021, 47. https://doi.org/10.1016/j.seta.2021.101311. (4)Zahid, S.; Rasool, A.; Ans, M.; Salim Akhter, M.; Iqbal, J.; Al-Buriahi, M. S.; Alomairy, S.; Alrowaili, Z. A. Environmentally Compatible and Highly Improved Hole Transport Materials (HTMs) Based on Benzotrithiophene (BTT) Skeleton for Perovskite as Well as Narrow Bandgap Donors for Organic Solar Cells. Solar Energy 2022, 231, 793–808. https://doi.org/10.1016/j.solener.2021.12.010. (5)Indonesia: Energy Country Profile - Our World in Data. https://ourworldindata.org/energy/country/indonesia (accessed 2023-04-27). (6)Wang, Y.; Chen, Q.; Fu, J.; Liu, Z.; Sun, Z.; Zhang, S.; Zhu, Y.; Jia, X.; Zhang, J.; Yuan, N.; Zhou, Y.; Song, B.; Li, Y. Annealing- and Doping-Free Hole Transport Material for p-i-n Perovskite Solar Cells with Efficiency Achieving over 21%. Chemical Engineering Journal 2022, 433. https://doi.org/10.1016/j.cej.2021.133265. (7)Chang, C. C.; Tao, J. H.; Tsai, C. E.; Cheng, Y. J.; Hsu, C. S. Cross-Linked Triarylamine-Based Hole-Transporting Layer for Solution-Processed PEDOT:PSS-Free Inverted Perovskite Solar Cells. ACS Appl Mater Interfaces 2018, 10 (25), 21466–21471. https://doi.org/10.1021/acsami.8b04396. (8)Ajayan, J.; Nirmal, D.; Mohankumar, P.; Saravanan, M.; Jagadesh, M.; Arivazhagan, L. A Review of Photovoltaic Performance of Organic/Inorganic Solar Cells for Future Renewable and Sustainable Energy Technologies. Superlattices Microstruct 2020, 143, 106549. https://doi.org/10.1016/J.SPMI.2020.106549. (9)Indonesia’s Solar Future. https://www.imf.org/en/Publications/fandd/issues/2022/12/country-case-indonesia-solar-future-jacques (accessed 2023-05-16). (10)Silalahi, D. F.; Blakers, A.; Stocks, M.; Lu, B.; Cheng, C.; Hayes, L. Indonesia’s Vast Solar Energy Potential. Energies 2021, Vol. 14, Page 5424 2021, 14 (17), 5424. https://doi.org/10.3390/EN14175424. (11)Solar power generation. https://ourworldindata.org/grapher/solar-energy-consumption?tab=chart&country=TWN~IDN (accessed 2023-05-16). (12)Panos, E.; Densing, M.; Volkart, K. Energy. Our World in Data 2022, 9, 28–49. https://doi.org/10.1016/j.esr.2015.11.003. (13)Kim, S.; Hoang, V. Q.; Bark, C. W. Silicon-Based Technologies for Flexible Photovoltaic (PV) Devices: From Basic Mechanism to Manufacturing Technologies. Nanomaterials. MDPI November 1, 2021. https://doi.org/10.3390/nano11112944. (14)Sriabisha, R.; Hariharan, R. High Efficiency Perovskite Solar Cell. Mater Today Proc 2020, 33, 450–453. https://doi.org/10.1016/J.MATPR.2020.05.031. (15)Zhou, D.; Zhou, T.; Tian, Y.; Zhu, X.; Tu, Y. Perovskite-Based Solar Cells: Materials, Methods, and Future Perspectives. Journal of Nanomaterials. Hindawi Limited 2018. https://doi.org/10.1155/2018/8148072. (16)Sharma, R.; Sharma, A.; Agarwal, S.; Dhaka, M. S. Stability and Efficiency Issues, Solutions and Advancements in Perovskite Solar Cells: A Review. Solar Energy 2022, 244, 516–535. https://doi.org/10.1016/J.SOLENER.2022.08.001. (17)Lee, P. H.; Wu, T. T.; Li, C. F.; Głowienka, D.; Sun, Y. H.; Lin, Y. T.; Yen, H. W.; Huang, C. G.; Galagan, Y.; Huang, Y. C.; Su, W. F. Highly Crystalline Colloidal Nickel Oxide Hole Transport Layer for Low-Temperature Processable Perovskite Solar Cell. Chemical Engineering Journal 2021, 412. https://doi.org/10.1016/j.cej.2021.128746. (18)Yin, X.; Zhai, J.; Du, P.; Chen, W. H.; Song, L.; Xiong, J.; Ko, F. A New Strategy for Efficient Light Management in Inverted Perovskite Solar Cell. Chemical Engineering Journal 2022, 439. https://doi.org/10.1016/j.cej.2022.135703. (19)Wang, J.; Wu, X.; Liu, Y.; Qin, T.; Zhang, K.; Li, N.; Zhao, J.; Ye, R.; Fan, Z.; Chi, Z.; Zhu, Z. Dopant-Free Hole-Transporting Material with Enhanced Intermolecular Interaction for Efficient and Stable n-i-p Perovskite Solar Cells. Adv Energy Mater 2021, 11 (29). https://doi.org/10.1002/aenm.202100967. (20)Li, B.; Cai, Y.; Tian, X.; Liang, X.; Li, D.; Zhang, Z.; Wang, S.; Guo, K.; Liu, Z. Decorating Hole Transport Material with −CF3 Groups for Highly Efficient and Stable Perovskite Solar Cells. Journal of Energy Chemistry 2021, 62, 523–531. https://doi.org/10.1016/J.JECHEM.2021.04.017. (21)Ma, S.; Zhang, X.; Liu, X.; Ghadari, R.; Cai, M.; Ding, Y.; Mateen, M.; Dai, S. Pyridine-Triphenylamine Hole Transport Material for Inverted Perovskite Solar Cells. Journal of Energy Chemistry 2021, 54, 395–402. https://doi.org/10.1016/j.jechem.2020.06.002. (22)Zhu, J. Y.; Niu, K.; Li, M.; Lin, M. Q.; Li, J. H.; Wang, Z. K. PEDOT:PSS-CrO3 Composite Hole-Transporting Layer for High-Performance p-i-n Structure Perovskite Solar Cells. Org Electron 2018, 54, 9–13. https://doi.org/10.1016/j.orgel.2017.11.030. (23)Wang, D.; Elumalai, N. K.; Mahmud, M. A.; Wright, M.; Upama, M. B.; Chan, K. H.; Xu, C.; Haque, F.; Conibeer, G.; Uddin, A. V2O5 -PEDOT: PSS Bilayer as Hole Transport Layer for Highly Efficient and Stable Perovskite Solar Cells. Org Electron 2018, 53, 66–73. https://doi.org/10.1016/j.orgel.2017.10.034. (24)Han, W.; Ren, G.; Liu, J.; Li, Z.; Bao, H.; Liu, C.; Guo, W. Recent Progress of Inverted Perovskite Solar Cells with a Modified PEDOT:PSS Hole Transport Layer. ACS Applied Materials & Interfaces 2020, 12 (44), 49297–49322. https://doi.org/10.1021/acsami.0c13576. (25)Erazo, E. A.; Ortiz, P.; Cortés, M. T. Tailoring the PEDOT:PSS Hole Transport Layer by Electrodeposition Method to Improve Perovskite Solar Cells. Electrochim Acta 2023, 439, 141573. https://doi.org/10.1016/j.electacta.2022.141573. (26)Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL. https://www.nrel.gov/pv/cell-efficiency.html (accessed 2023-04-29). (27)Marques Lameirinhas, R. A.; Torres, J. P. N.; de Melo Cunha, J. P. A Photovoltaic Technology Review: History, Fundamentals and Applications. Energies. MDPI March 1, 2022. https://doi.org/10.3390/en15051823. (28)Sahu, A.; Garg, A.; Dixit, A. A Review on Quantum Dot Sensitized Solar Cells: Past, Present and Future towards Carrier Multiplication with a Possibility for Higher Efficiency. Solar Energy. Elsevier Ltd June 1, 2020, pp 210–239. https://doi.org/10.1016/j.solener.2020.04.044. (29)Pitchaiya, S.; Natarajan, M.; Santhanam, A.; Asokan, V.; Yuvapragasam, A.; Madurai Ramakrishnan, V.; Palanisamy, S. E.; Sundaram, S.; Velauthapillai, D. A Review on the Classification of Organic/Inorganic/Carbonaceous Hole Transporting Materials for Perovskite Solar Cell Application. Arabian Journal of Chemistry. Elsevier B.V. January 1, 2020, pp 2526–2557. https://doi.org/10.1016/j.arabjc.2018.06.006. (30)Khatibi, A.; Razi Astaraei, F.; Ahmadi, M. H. Generation and Combination of the Solar Cells: A Current Model Review. Energy Sci Eng 2019, 7 (2), 305–322. https://doi.org/10.1002/ESE3.292. (31)Soonmin, H.; Hardani; Nandi, P.; Mwankemwa, B. S.; Malevu, T. D.; Malik, M. I. Overview on Different Types of Solar Cells: An Update. Applied Sciences 2023, Vol. 13, Page 2051 2023, 13 (4), 2051. https://doi.org/10.3390/APP13042051. (32)Bensouda, Y.; Barrit, D. Mini-Review on All-Inorganic Lead-Based Perovskite Solar Cells: Challenges and Opportunities for Production and Upscaling. Emergent Mater 2022, 5 (1), 207–225. https://doi.org/10.1007/s42247-022-00364-0. (33)Kartikay, P.; Sadhukhan, D.; Yella, A.; Mallick, S. Enhanced Charge Transport in Low Temperature Carbon-Based n-i-p Perovskite Solar Cells with NiOx-CNT Hole Transport Material. Solar Energy Materials and Solar Cells 2021, 230. https://doi.org/10.1016/j.solmat.2021.111241. (34)Fuentes Pineda, R.; Troughton, J.; Planells, M.; Sanchez-Molina Santos, I.; Muhith, F.; Nichol, G. S.; Haque, S.; Watson, T.; Robertson, N. Effect of Alkyl Chain Length on the Properties of Triphenylamine-Based Hole Transport Materials and Their Performance in Perovskite Solar Cells. Physical Chemistry Chemical Physics 2018, 20 (2), 1252–1260. https://doi.org/10.1039/c7cp07682g. (35)Ding, X.; Wang, H.; Miao, Y.; Chen, C.; Zhai, M.; Yang, C.; Wang, B.; Tian, Y.; Cheng, M. Bi(Trifluoromethyl) Benzoic Acid-Assisted Shallow Defect Passivation for Perovskite Solar Cells with an Efficiency Exceeding 21%. ACS Appl Mater Interfaces 2022, 14 (3), 3930–3938. https://doi.org/10.1021/acsami.1c18035. (36)Chen, Y. C.; Lin, D. Z.; Wang, J. C.; Ni, J. S.; Yu, Y. Y.; Chen, C. P. Facile Star-Shaped Tetraphenylethylene-Based Molecules with Fused Ring-Terminated Diarylamine as Interfacial Hole Transporting Materials for Inverted Perovskite Solar Cells. Materials Chemistry Frontiers. Royal Society of Chemistry February 7, 2021, pp 1373–1387. https://doi.org/10.1039/d0qm00728e. (37)Kumar, A.; Singh, S.; Yadav, A. Recent Progress in Inverted Perovskite Solar Cells Employing Nickel Oxide (NiOx) as a Hole Transport Materials. In Materials Today: Proceedings; Elsevier Ltd, 2021; Vol. 46, pp 5827–5832. https://doi.org/10.1016/j.matpr.2021.02.728. (38)Shao, J.-Y.; Zhong, Y.-W. Design of Small Molecular Hole-Transporting Materials for Stable and High-Performance Perovskite Solar Cells. Chemical Physics Reviews 2021, 2 (2), 021302. https://doi.org/10.1063/5.0051254. (39)Sun, J.; Lu, J.; Li, B.; Jiang, L.; Chesman, A. S. R.; Scully, A. D.; Gengenbach, T. R.; Cheng, Y. B.; Jasieniak, J. J. Inverted Perovskite Solar Cells with High Fill-Factors Featuring Chemical Bath Deposited Mesoporous NiO Hole Transporting Layers. Nano Energy 2018, 49, 163–171. https://doi.org/10.1016/j.nanoen.2018.04.026. (40)Aktas, E.; Rajamanickam, N.; Pascual, J.; Hu, S.; Aldamasy, M. H.; Di Girolamo, D.; Li, W.; Nasti, G.; Martínez-Ferrero, E.; Wakamiya, A.; Palomares, E.; Abate, A. Challenges and Strategies toward Long-Term Stability of Lead-Free Tin-Based Perovskite Solar Cells. Commun Mater 2022, 3 (1), 104. https://doi.org/10.1038/s43246-022-00327-2. (41)Lee, J. H.; Jang, M. H.; Lee, C. H.; Lee, J. J.; Lee, S. Y.; Jo, J. W. Inclusion of Triphenylamine Unit in Dopant-Free Hole Transport Material for Enhanced Interfacial Interaction in Perovskite Photovoltaics. Dyes and Pigments 2022, 200. https://doi.org/10.1016/j.dyepig.2022.110162. (42)Javaid, H.; Duzhko, V. V.; Venkataraman, D. Hole Transport Bilayer for Highly Efficient and Stable Inverted Perovskite Solar Cells. ACS Appl Energy Mater 2021, 4 (1), 72–80. https://doi.org/10.1021/acsaem.0c01806. (43)Jia, J.; Zhang, Y.; Duan, L.; Wu, Q.; Chen, Y.; Xue, S. An Asymmetrically Substituted Dithieno[3,2-b:2′,3′-d]Pyrrole Organic Small-Molecule Hole-Transporting Material for High-Performance Perovskite Solar Cells. Chin J Chem Eng 2022, 45, 51–57. https://doi.org/10.1016/j.cjche.2021.03.052. (44)Zhang, F.; Yao, Z.; Guo, Y.; Li, Y.; Bergstrand, J.; Brett, C. J.; Cai, B.; Hajian, A.; Guo, Y.; Yang, X.; Gardner, J. M.; Widengren, J.; Roth, S. V.; Kloo, L.; Sun, L. Polymeric, Cost-Effective, Dopant-Free Hole Transport Materials for Efficient and Stable Perovskite Solar Cells. J Am Chem Soc 2019, 141 (50), 19700–19707. https://doi.org/10.1021/jacs.9b08424. (45)Fakharuddin, A.; Vasilopoulou, M.; Soultati, A.; Haider, M. I.; Briscoe, J.; Fotopoulos, V.; Di Girolamo, D.; Davazoglou, D.; Chroneos, A.; Yusoff, A. R. bin M.; Abate, A.; Schmidt-Mende, L.; Nazeeruddin, M. K. Robust Inorganic Hole Transport Materials for Organic and Perovskite Solar Cells: Insights into Materials Electronic Properties and Device Performance. Solar RRL. Wiley-VCH Verlag January 1, 2021. https://doi.org/10.1002/solr.202000555. (46)Gong, Z.; Wang, R.; Jiang, Y.; Kong, X.; Lin, Y.; Xu, Z.; Zhou, G.; Liu, J. M.; Kempa, K.; Gao, J. Novel D-A-D Type Small-Molecular Hole Transport Materials for Stable Inverted Perovskite Solar Cells. Org Electron 2021, 92. https://doi.org/10.1016/j.orgel.2021.106102. (47)Wang, Q.; Chueh, C. C.; Zhao, T.; Cheng, J.; Eslamian, M.; Choy, W. C. H.; Jen, A. K. Y. Effects of Self-Assembled Monolayer Modification of Nickel Oxide Nanoparticles Layer on the Performance and Application of Inverted Perovskite Solar Cells. ChemSusChem 2017, 10 (19), 3794–3803. https://doi.org/10.1002/cssc.201701262. (48)He, B.; Liu, T.; Wang, B.; Wen, Z.; Yu, X.; Xing, G.; Chen, S. Boosting the Efficiency of Quasi-2D Perovskite Light-Emitting Diodes via Tailoring the PEDOT:PSS Hole Transport Layer. Appl Surf Sci 2022, 585. https://doi.org/10.1016/j.apsusc.2022.152692. (49)Li, Y.; Wang, B.; Liu, T.; Zeng, Q.; Cao, D.; Pan, H.; Xing, G. Interfacial Engineering of PTAA/Perovskites for Improved Crystallinity and Hole Extraction in Inverted Perovskite Solar Cells. ACS Appl Mater Interfaces 2022, 14 (2), 3284–3292. https://doi.org/10.1021/acsami.1c21000. (50)Xu, J.; Dai, J.; Dong, H.; Li, P.; Chen, J.; Zhu, X.; Wang, Z.; Jiao, B.; Hou, X.; Li, J.; Wu, Z. Surface-Tension Release in PTAA-Based Inverted Perovskite Solar Cells. Org Electron 2022, 100. https://doi.org/10.1016/j.orgel.2021.106378. (51)Xie, Y.; Yao, Q.; Xue, Q.; Zeng, Z.; Niu, T.; Zhou, Y.; Zhuo, M.; Tsang, S.; Yip, H.; Cao, Y. Subtle Side Chain Modification of Triphenylamine‐based Polymer Hole‐transport Layer Materials Produces Efficient and Stable Inverted Perovskite Solar Cells. Interdisciplinary Materials 2022, 1 (2), 281–293. https://doi.org/10.1002/idm2.12023. (52)Zhang, W.; Shen, H.; Zhang, J.; Zhang, J.; Lu, L.; Zhu, X.; Li, D. NiOx Thickness Dependent Improvement of NiOx/Perovskite Interface for Inverted Planar Perovskite Solar Cells. Opt Mater (Amst) 2022, 132. https://doi.org/10.1016/j.optmat.2022.112774. (53)Ramachandran, K.; Jeganathan, C.; Karuppuchamy, S. Electrodeposition of Nanostructured Bilayer CuI@CuSCN as Hole Transport Material for Highly Efficient Inverted Perovskite Solar Cells. J Alloys Compd 2021, 881. https://doi.org/10.1016/j.jallcom.2021.160530. (54)Ahmmed, S.; Aktar, A.; Ismail, A. B. M. Role of a Solution-Processed V2O5Hole Extracting Layer on the Performance of CuO-ZnO-Based Solar Cells. ACS Omega 2021, 6 (19), 12631–12639. https://doi.org/10.1021/acsomega.1c00678. (55)Yao, Y.; Cheng, C.; Zhang, C.; Hu, H.; Wang, K.; De Wolf, S. Organic Hole‐Transport Layers for Efficient, Stable, and Scalable Inverted Perovskite Solar Cells. Advanced Materials 2022, 2203794. https://doi.org/10.1002/adma.202203794. (56)Chen, Y.; Yang, Z.; Wang, S.; Zheng, X.; Wu, Y.; Yuan, N.; Zhang, W. H.; Liu, S. (Frank). Design of an Inorganic Mesoporous Hole-Transporting Layer for Highly Efficient and Stable Inverted Perovskite Solar Cells. Advanced Materials 2018, 30 (52). https://doi.org/10.1002/adma.201805660. (57)Wang, Y.; Chen, W.; Wang, L.; Tu, B.; Chen, T.; Liu, B.; Yang, K.; Koh, C. W.; Zhang, X.; Sun, H.; Chen, G.; Feng, X.; Woo, H. Y.; Djurišić, A. B.; He, Z.; Guo, X. Dopant-Free Small-Molecule Hole-Transporting Material for Inverted Perovskite Solar Cells with Efficiency Exceeding 21%. Advanced Materials 2019, 31 (35). https://doi.org/10.1002/adma.201902781. (58)Luo, M.; Zong, X.; Zhao, M.; Sun, Z.; Chen, Y.; Liang, M.; Wu, Y.; Xue, S. Synergistic Effect of Amide and Fluorine of Polymers Assist Stable Inverted Perovskite Solar Cells with Fill Factor > 83%. Chemical Engineering Journal 2022, 442. https://doi.org/10.1016/j.cej.2022.136136. (59)Wang, X.; Rakstys, K.; Jack, K.; Jin, H.; Lai, J.; Li, H.; Ranasinghe, C. S. K.; Saghaei, J.; Zhang, G.; Burn, P. L.; Gentle, I. R.; Shaw, P. E. Engineering Fluorinated-Cation Containing Inverted Perovskite Solar Cells with an Efficiency of >21% and Improved Stability towards Humidity. Nat Commun 2021, 12 (1). https://doi.org/10.1038/s41467-020-20272-3. (60)Zhu, E.; Wang, J.; Xu, J.; Fu, L.; Li, R.; Yu, C.; Ge, S.; Lin, X.; Chen, R.; Wu, H.; Wang, H. L.; Che, G. Efficient Inverted Perovskite Solar Cells Enabled by Dopant-Free Hole-Transporting Materials Based on Dibenzofulvene-Bridged Indacenodithiophene Core Attaching Varying Alkyl Chains. ACS Appl Mater Interfaces 2021, 13 (11), 13254–13263. https://doi.org/10.1021/acsami.0c22993. (61)Idrissi, A.; El Fakir, Z.; Atir, R.; Habsaoui, A.; Touhami, M. E.; Bouzakraoui, S. Thiophene-Based Molecules as Hole Transport Materials for Efficient Perovskite Solar Cells or as Donors for Organic Solar Cells. Mater Chem Phys 2023, 293. https://doi.org/10.1016/j.matchemphys.2022.126851. (62)Zhang, J.; Sun, Q.; Chen, Q.; Wang, Y.; Zhou, Y.; Song, B.; Yuan, N.; Ding, J.; Li, Y. High Efficiency Planar P-i-n Perovskite Solar Cells Using Low-Cost Fluorene-Based Hole Transporting Material. Adv Funct Mater 2019, 29 (22). https://doi.org/10.1002/adfm.201900484. (63)Zhang, J.; Sun, Q.; Chen, Q.; Wang, Y.; Zhou, Y.; Song, B.; Yuan, N.; Ding, J.; Li, Y. High Efficiency Planar P-i-n Perovskite Solar Cells Using Low-Cost Fluorene-Based Hole Transporting Material. Adv Funct Mater 2019, 29 (22). https://doi.org/10.1002/adfm.201900484. (64)Daskeviciute-Geguziene, S.; Magomedov, A.; Daskeviciene, M.; Genevičius, K.; Nekrašas, N.; Jankauskas, V.; Kantminiene, K.; McGehee, M. D.; Getautis, V. Cross-Linkable Carbazole-Based Hole Transporting Materials for Perovskite Solar Cells. Chemical Communications 2022, 58 (54), 7495–7498. https://doi.org/10.1039/D2CC02612K. (65)Doyranli, C.; Gokdemir Choi, F. P.; Moeini Alishah, H.; Koyuncu, S.; Gunes, S.; San, N. Triphenylamine-Based Organic Small-Molecule Interlayer Materials for Inverted Perovskite Solar Cells. Org Electron 2022, 108. https://doi.org/10.1016/j.orgel.2022.106595. (66)Li, L.; Zhang, X.; Zeng, H.; Zheng, X.; Zhao, Y.; Luo, L.; Liu, F.; Li, X. Thermally-Stable and Highly-Efficient Bi-Layered NiOx-Based Inverted Planar Perovskite Solar Cells by Employing a p-Type Organic Semiconductor. Chemical Engineering Journal. Elsevier B.V. September 1, 2022. https://doi.org/10.1016/j.cej.2022.136405. (67)Duan, L. S.; Wu, Q. P.; Xu, Y. Y.; Wang, H.; Sun, Z.; Chen, Y.; Xue, S. One-Pot Synthesis of Tetraarylpyrrolo[3,2-b]Pyrrole Dopant-Free Hole-Transport Materials for Inverted Perovskite Solar Cells. Chinese Journal of Chemical Physics 2021, 34 (2), 217–226. https://doi.org/10.1063/1674-0068/cjcp2006106. (68)Lin, H. S.; Doba, T.; Sato, W.; Matsuo, Y.; Shang, R.; Nakamura, E. Triarylamine/Bithiophene Copolymer with Enhanced Quinoidal Character as Hole-Transporting Material for Perovskite Solar Cells. Angewandte Chemie - International Edition 2022, 61 (27). https://doi.org/10.1002/anie.202203949. (69)Shang, R.; Zhou, Z.; Nishioka, H.; Halim, H.; Furukawa, S.; Takei, I.; Ninomiya, N.; Nakamura, E. Disodium Benzodipyrrole Sulfonate as Neutral Hole-Transporting Materials for Perovskite Solar Cells. J Am Chem Soc 2018, 140 (15), 5018–5022. https://doi.org/10.1021/jacs.8b01783. (70)Sun, Z. Z.; Hao, M.; Feng, S.; Ding, W. L.; Peng, X. L. Boosting the Performance of D–A–D Type Hole-Transporting Materials for Perovskite Solar Cells via Tuning the Acceptor Group. New Journal of Chemistry 2020, 44 (35), 15244–15250. https://doi.org/10.1039/D0NJ03306E. (71)Manda, K.; Kore, R.; Ambapuram, M.; Chetti, P.; Roy, S.; Jadhav, V. D.; Babu S., N.; Gundla, R.; Mitty, R.; Pola, S. Benzodithiophene-Based, Donor–Acceptor–π–Donor–Acceptor Systems as Hole Transporting Materials for Efficient Perovskite Solar Cells. ChemPhotoChem 2022, 6 (12), e202200062. https://doi.org/10.1002/CPTC.202200062. (72)Wu, G.; Zhang, Y.; Kaneko, R.; Kojima, Y.; Sugawa, K.; Islam, A.; Otsuki, J.; Liu, S. Triphenylamine-Based Hole Transporting Materials with Thiophene-Derived Bridges for Perovskite Solar Cells. Synth Met 2020, 261, 116323. https://doi.org/10.1016/J.SYNTHMET.2020.116323. (73)Gul, S.; Hameed, S.; Ans, M.; Iqbal, J. Carbazole-Based Donor Materials with Enhanced Photovoltaic Parameters for Organic Solar Cells and Hole-Transport Materials for Efficient Perovskite Solar Cells. J Mol Model 2022, 28 (11), 1–14. https://doi.org/10.1007/S00894-022-05351-0/TABLES/5. (74)Thokala, S.; Singh, S. P. Phenothiazine-Based Hole Transport Materials for Perovskite Solar Cells. ACS Omega 2020, 5 (11), 5608–5619. https://doi.org/10.1021/ACSOMEGA.0C00065/ASSET/IMAGES/LARGE/AO0C00065_0017.JPEG. (75)Zhai, M.; Miao, Y.; Chen, C.; Liu, L.; Wang, H.; Ding, X.; Xia, Z.; Wang, L.; Cheng, M. Modulating Donor Assemblies of D-π-D Type Hole Transport Materials for Perovskite Solar Cells. J Power Sources 2022, 551. https://doi.org/10.1016/j.jpowsour.2022.232199. (76)Tahir, M. H.; Mubashir, T.; Shah, T. U. H.; Mahmood, A. Impact of Electron-Withdrawing and Electron-Donating Substituents on the Electrochemical and Charge Transport Properties of Indacenodithiophene-Based Small Molecule Acceptors for Organic Solar Cells. J Phys Org Chem 2019, 32 (3). https://doi.org/10.1002/poc.3909. (77)Yao, C.; Zhao, J.; Zhu, Y.; Liu, B.; Yan, C.; Perepichka, D. F.; Meng, H. Trifluoromethyl Group-Modified Non-Fullerene Acceptor toward Improved Power Conversion Efficiency over 13% in Polymer Solar Cells. ACS Appl Mater Interfaces 2020, 12 (10), 11543–11550. https://doi.org/10.1021/acsami.9b20544. (78)Feng, Y.; Hu, Q.; Rezaee, E.; Li, M.; Xu, Z. X.; Lorenzoni, A.; Mercuri, F.; Muccini, M. High-Performance and Stable Perovskite Solar Cells Based on Dopant-Free Arylamine-Substituted Copper(II) Phthalocyanine Hole-Transporting Materials. Adv Energy Mater 2019, 9 (26), 1901019. https://doi.org/10.1002/AENM.201901019. (79)Wu, J.; Liu, C.; Li, B.; Gu, F.; Zhang, L.; Hu, M.; Deng, X.; Qiao, Y.; Mao, Y.; Tan, W.; Tian, Y.; Xu, B. Side-Chain Polymers as Dopant-Free Hole-Transporting Materials for Perovskite Solar Cells - The Impact of Substituents’ Positions in Carbazole on Device Performance. ACS Appl Mater Interfaces 2019, 11 (30), 26928–26937. https://doi.org/10.1021/ACSAMI.9B07859/ASSET/IMAGES/LARGE/AM-2019-07859F_0004.JPEG. (80)Liu, L.; Miao, Y.; Zhai, M.; Wu, T.; Ding, X.; Wang, H.; Chen, C.; Hua, Y.; Guo, L.; Cheng, M. Symmetric Acridine Bridging Hole Transport Material for Perovskite Solar Cell. Dyes and Pigments 2023, 213, 111158. https://doi.org/10.1016/J.DYEPIG.2023.111158. (81)Radhakrishna, K.; Manjunath, S. B.; Devadiga, D.; Chetri, R.; Nagaraja, A. T. Review on Carbazole-Based Hole Transporting Materials for Perovskite Solar Cell. ACS Appl Energy Mater 2022. https://doi.org/10.1021/ACSAEM.2C03025/ASSET/IMAGES/LARGE/AE2C03025_0027.JPEG. (82)Gao, L.; Schloemer, T. H.; Zhang, F.; Chen, X.; Xiao, C.; Zhu, K.; Sellinger, A.; Zhu, K. Carbazole-Based Hole-Transport Materials for High-Efficiency and Stable Perovskite Solar Cells. ACS Appl Energy Mater 2020, 3 (5), 4492–4498. https://doi.org/10.1021/ACSAEM.0C00179/ASSET/IMAGES/LARGE/AE0C00179_0005.JPEG. (83)Huang, P.; Manju; Kazim, S.; Lezama, L.; Misra, R.; Ahmad, S. Tailoring of a Phenothiazine Core for Electrical Conductivity and Thermal Stability: Hole-Selective Layers in Perovskite Solar Cells. ACS Appl Mater Interfaces 2021, 13 (28), 33311–33320. https://doi.org/10.1021/ACSAMI.1C08470/ASSET/IMAGES/LARGE/AM1C08470_0007.JPEG. (84)Alkaş, A.; Friche, L. E. S.; Harris, S. N.; Telfer, S. G. Thermal Elimination of Ethylene from Cyclobutyl Groups Characterized by X-Ray Crystallography in a Metal–Organic Framework Matrix. Chemistry – A European Journal 2020, 26 (45), 10321–10329. https://doi.org/10.1002/CHEM.202001466. (85)Cardone, A.; Capodilupo, A. L. Functional Organic Materials for Photovoltaics: The Synthesis as a Tool for Managing Properties for Solid State Applications. Materials 2022, Vol. 15, Page 6333 2022, 15 (18), 6333. https://doi.org/10.3390/MA15186333. (86)Sánchez, J. G.; Aktas, E.; Martínez‐Ferrero, E.; Capodilupo, A. L.; Corrente, G. A.; Beneduci, A.; Palomares, E. Increasing the Stability of Perovskite Solar Cells with Dibenzofulvene-Based Hole Transporting Materials. Electrochim Acta 2022, 432, 141190. https://doi.org/10.1016/j.electacta.2022.141190. (87)Chen, Y. C.; Li, Y. H.; Chung, C. L.; Hsu, H. L.; Chen, C. P. Triphenylamine Dibenzofulvene–Derived Dopant-Free Hole Transporting Layer Induces Micrometer-Sized Perovskite Grains for Highly Efficient near 20% for p-i-n Perovskite Solar Cells. Progress in Photovoltaics: Research and Applications 2020, 28 (1), 49–59. https://doi.org/10.1002/pip.3205. (88)Qin, T.; Wu, F.; Zhu, L.; Chi, W.; Zhang, Y.; Yang, Z.; Zhao, J.; Chi, Z. A Hole-Transporting Material with Substituted Fluorene as End Groups for High-Performance Perovskite Solar Cells. Org Electron 2022, 100. https://doi.org/10.1016/j.orgel.2021.106325. (89)Leoncini, M.; Capodilupo, A. L.; Altamura, D.; Giannini, C.; Accorsi, G.; Fabiano, E.; Rizzo, A.; Gigli, G.; Gambino, S. Correlating the Chemical Structure and Charge Transport Ability of Dibenzofulvene-Based Hole Transporting Materials for Stable Perovskite Solar Cells. J Mater Chem C Mater 2022, 10 (15), 5981–5993. https://doi.org/10.1039/d1tc05690e. (90)Giangregorio, M. M.; Gambino, S.; Fabiano, E.; Leoncini, M.; Cardone, A.; Corrente, G. A.; Beneduci, A.; Accorsi, G.; Gigli, G.; Losurdo, M.; Termine, R.; Capodilupo, A. L. Synthesis and Investigation of Electro-Optical Properties of H-Shape Dibenzofulvene Derivatives. Molecules 2022, 27 (3). https://doi.org/10.3390/molecules27031091. (91)Lin, S. C.; Cheng, T. H.; Chen, C. P.; Chen, Y. C. Structural Effect on Triphenylamine Dibenzofulvene Based Interfacial Hole Transporting Materials for High-Performance Inverted Perovskite Solar Cells. Mater Chem Phys 2022, 288. https://doi.org/10.1016/j.matchemphys.2022.126385. (92)Li, Y.; Gao, S.; Zhang, N.; Huang, X.; Tian, J.; Xu, F.; Sun, Z.; Yin, S.; Wu, X.; Chu, W. Solution-Processable, High Luminance Deep-Blue Organic Light Emitting Devices Based on Novel Naphthalene Bridged Bis-Triphenylamine Derivatives. J Mater Chem C Mater 2019, 7 (9), 2686–2698. https://doi.org/10.1039/c8tc05911j. (93)Bernard, R. S.; Andruleviciene, V.; Bezvikonnyi, O.; Volyniuk, D.; Simokaitiene, J.; Kublickas, R. H.; Grazulevicius, J. V. Impact of the Substitution Pattern of the Acceptor on the Properties of the Bis(Trifluoromethyl)Phenyl Disubstituted Aromatic Diamines. J Photochem Photobiol A Chem 2022, 430. https://doi.org/10.1016/j.jphotochem.2022.113969. (94)Shahinuzzaman, M.; Afroz, S.; Mohafez, H.; Jamal, M. S.; Khandaker, M. U.; Sulieman, A.; Tamam, N.; Islam, M. A. Roles of Inorganic Oxide Based HTMs towards Highly Efficient and Long-Term Stable PSC—A Review. Nanomaterials. MDPI September 1, 2022. https://doi.org/10.3390/nano12173003. (95)Lee, S.; Lee, J.; Park, H.; Choi, J.; Baac, H. W.; Park, S.; Park, H. J. Defect-Passivating Organic/Inorganic Bicomponent Hole-Transport Layer for High Efficiency Metal-Halide Perovskite Device. ACS Appl Mater Interfaces 2020, 12 (36), 40310–40317. https://doi.org/10.1021/acsami.0c09784. (96)Maddala, S.; Chung, C. L.; Wang, S. Y.; Kollimalayan, K.; Hsu, H. L.; Venkatakrishnan, P.; Chen, C. P.; Chang, Y. J. Forming a Metal-Free Oxidatively Coupled Agent, Bicarbazole, as a Defect Passivation for HTM and an Interfacial Layer in a p-i-n Perovskite Solar Cell Exhibits Nearly 20% Efficiency. Chemistry of Materials 2020, 32 (1), 127–138. https://doi.org/10.1021/acs.chemmater.9b02720. (97)Cheng, H.; Li, Y.; Zhao, G.; Zhao, K.; Wang, Z. S. Pyridine-Terminated Conjugated Organic Molecules as an Interfacial Hole Transfer Bridge for NiOx-Based Perovskite Solar Cells. ACS Appl Mater Interfaces 2019, 11 (32), 28960–28967. https://doi.org/10.1021/acsami.9b09530. (98)Tigreros, A.; Rivera-Nazario, D. M.; Ortiz, A.; Martin, N.; Insuasty, B.; Echegoyen, L. A. Fluoren-9-Ylidene-Based Dyes for Dye-Sensitized Solar Cells. European J Org Chem 2015, 2015 (25), 5537–5545. https://doi.org/10.1002/ejoc.201500602. (99)Yang, S.; Lin, Y.; Sun, J.; Li, C.; Zhang, Y.; Zhang, C. Integrated Electrochromic and Electrofluorochromic Properties from Polyaniline-like Polymers with Triphenylacrylonitrile as Side Groups. Electrochim Acta 2022, 421. https://doi.org/10.1016/j.electacta.2022.140443. (100)Mahmoud, S. E.; Fadda, A. A.; Abdel-Latif, E.; Elmorsy, M. R. Synthesis of Novel Triphenylamine-Based Organic Dyes with Dual Anchors for Efficient Dye-Sensitized Solar Cells. Nanoscale Res Lett 2022, 17 (1). https://doi.org/10.1186/s11671-022-03711-6. (101)Lin, H. C.; Chen, L. Y.; Lu, C. C.; Lai, J. Y.; Chen, Y. C.; Hung, Y. J. Ambipolar Carrier Transport Properties of Triphenylamine/Dibenzofulvene Derivative and Its Application for Efficient n-i-p Perovskite Solar Cells. Org Electron 2021, 95. https://doi.org/10.1016/j.orgel.2021.106200. (102)Liu, L.; Guo, Q.; Li, J.; Yao, B.; Tian, W. Synthesis, Characterization and Properties of Novel Star-Shaped π-Conjugated Oligomers with Triphenylamine Core. Chin J Chem 2013, 31 (4), 456–464. https://doi.org/10.1002/cjoc.201201197. (103)Sokół, A.; Koroniak, H.; Hoffmann, M.; Siodła, T. Naphthalene vs. Benzene as a Transmitting Moiety: Towards the More Sensitive Trifluoromethylated Molecular Probes for the Substituent Effects. Molecules 2022, 27 (13). https://doi.org/10.3390/molecules27134173. (104)Corrente, G. A.; Fabiano, E.; De Marco, L.; Accorsi, G.; Giannuzzi, R.; Cardone, A.; Gigli, G.; Ciccarella, G.; Capodilupo, A. L. Effects of Donor Position on Dibenzofulvene-Based Organic Dyes for Photovoltaics. Journal of Materials Science: Materials in Electronics 2017, 28 (12), 8694–8707. https://doi.org/10.1007/s10854-017-6594-2. (105)Singh, A.; Abate, S. Y.; Pavan Kumar, C.; Wu, W. T.; Hsiao, J. C.; Wu, F. L.; Lin, J. T. suen; Tao, Y. T. Bis(Diphenylamine)-Tethered Carbazolyl Anthracene Derivatives as Hole-Transporting Materials for Stable and High-Performance Perovskite Solar Cells. ACS Appl Energy Mater 2020, 3 (11), 10752–10764. https://doi.org/10.1021/acsaem.0c01796. (106)Unny, D.; Sivanadanam, J.; Mandal, S.; Aidhen, I. S.; Ramanujam, K. Effect of Flexible, Rigid Planar and Non-Planar Donors on the Performance of Dye-Sensitized Solar Cells. J Electrochem Soc 2018, 165 (13), H845–H860. https://doi.org/10.1149/2.0551813jes. (107)Gribanov, P. S.; Vorobyeva, D. V.; Tokarev, S. D.; Petropavlovskikh, D. A.; Loginov, D. A.; Nefedov, S. E.; Dolgushin, F. M.; Osipov, S. N. Rhodium-Catalyzed C−H Activation/Annulation of Aryl Hydroxamates with Benzothiadiazol-Containing Acetylenes: Access to Isoquinoline-Bridged Donor-Acceptor Luminophores. European J Org Chem 2022, 2022 (13). https://doi.org/10.1002/ejoc.202101572. (108)Singh, P. S.; Ghadiyali, M.; Chacko, S.; Kamble, R. M. D−A−D Based Pyrido-Pyrazino[2,3-b]Indole Amines as Blue-Red Fluorescent Dyes: Photophysical, Aggregation-Induced Emission, Electrochemical and Theoretical Studies. J Lumin 2022, 242. https://doi.org/10.1016/j.jlumin.2021.118568. (109)Fu, Y.; Li, Y.; Zeng, Q.; Wu, H.; Wang, L.; Tang, H.; Xing, G.; Cao, D. Influence of Donor Units on Spiro[Fluorene-9,9′-Xanthene]-Based Dopant-Free Hole Transporting Materials for Perovskite Solar Cells. Solar Energy 2021, 216, 180–187. https://doi.org/10.1016/j.solener.2021.01.004. (110)Gu, X.; Yao, J.; Zhang, G.; Yan, Y.; Zhang, C.; Peng, Q.; Liao, Q.; Wu, Y.; Xu, Z.; Zhao, Y.; Fu, H.; Zhang, D. Polymorphism-Dependent Emission for Di(p-Methoxylphenyl)Dibenzofulvene and Analogues: Optical Waveguide/Amplified Spontaneous Emission Behaviors. Adv Funct Mater 2012, 22 (23), 4862–4872. https://doi.org/10.1002/ADFM.201201482. (111)Zhang, B.; Zhou, Y.; Xue, Q.; Tian, J.; Yao, Q.; Zang, Y.; Wang, L.; Yang, W.; Yip, H. L.; Cao, Y. The Energy-Alignment Engineering in Polytriphenylamines-Based Hole Transport Polymers Realizes Low Energy Loss and High Efficiency for All-Inorganic Perovskite Solar Cells. Solar RRL 2019, 3 (9). https://doi.org/10.1002/solr.201900265. (112)Igci, C.; Kanda, H.; Yoo, S. M.; Sutanto, A. A.; Syzgantseva, O. A.; Syzgantseva, M. A.; Jankauskas, V.; Rakstys, K.; Mensi, M.; Kim, H.; Asiri, A. M.; Nazeeruddin, M. K. Highly Planar Benzodipyrrole-Based Hole Transporting Materials with Passivation Effect for Efficient Perovskite Solar Cells. Solar RRL 2022, 6 (1). https://doi.org/10.1002/solr.202100667. (113)Chen, W.; Wang, Y.; Liu, B.; Gao, Y.; Wu, Z.; Shi, Y.; Tang, Y.; Yang, K.; Zhang, Y.; Sun, W.; Feng, X.; Laquai, F.; Woo, H. Y.; Djurišić, A. B.; Guo, X.; He, Z. Engineering of Dendritic Dopant-Free Hole Transport Molecules: Enabling Ultrahigh Fill Factor in Perovskite Solar Cells with Optimized Dendron Construction. Sci China Chem 2020. https://doi.org/10.1007/s11426-020-9857-1. (114)Niu, R.; Li, J.; Liu, D.; Dong, R.; Wei, W.; Tian, H.; Shi, C. A Versatile Carbazole Donor Design Strategy for Blue Emission Switching from Normal Fluorescence to Thermally Activated Delayed Fluorescence. Dyes and Pigments 2021, 194, 109581. https://doi.org/10.1016/J.DYEPIG.2021.109581. (115)Salunke, J. K.; Wong, F. L.; Feron, K.; Manzhos, S.; Lo, M. F.; Shinde, D.; Patil, A.; Lee, C. S.; Roy, V. A. L.; Sonar, P.; Wadgaonkar, P. P. Phenothiazine and Carbazole Substituted Pyrene Based Electroluminescent Organic Semiconductors for OLED Devices. J Mater Chem C Mater 2016, 4 (5), 1009–1018. https://doi.org/10.1039/c5tc03690a. (116)Liu, X.; Wu, T.; Zhang, C.; Zhang, Y.; Segawa, H.; Han, L.; Liu, X.; Segawa, H.; Han, L.; Wu, T.; Zhang, C.; Zhang, Y. Interface Energy-Level Management toward Efficient Tin Perovskite Solar Cells with Hole-Transport-Layer-Free Structure. Adv Funct Mater 2021, 31 (50), 2106560. https://doi.org/10.1002/ADFM.202106560. (117)Derince, B.; Gorgun, K.; Caglar, Y.; Caglar, M. Architectural Design of New Conjugated Systems Carrying Donor-π-Acceptor Groups (Carbazole-CF3): Characterizations, Optical, Photophysical Properties and DSSC’s Applications. J Mol Struct 2022, 1250. https://doi.org/10.1016/j.molstruc.2021.131689. (118)Heo, H. J.; Han, D. J.; Sohn, E. H. Impact of Trifluoromethyl Groups on the Control of Surface and Optical Properties of Poly(Methyl Methacrylate). J Fluor Chem 2019, 219, 92–97. https://doi.org/10.1016/j.jfluchem.2019.01.001. (119)Zheng, P.; Xu, J.; Peng, F.; Peng, S.; Liao, J.; Zhao, H.; Li, L.; Zeng, X.; Yu, H. Novel Dual Acceptor (D–D′–A′–π–A) Dye-Sensitized Solar Cells Based on the Triarylamine Structure and Benzothiadiazole Double Electron Withdrawing Unit. New Journal of Chemistry 2021, 45 (9), 4443–4452. https://doi.org/10.1039/D0NJ05319H. (120)Chiu, Y. L.; Li, C. W.; Kang, Y. H.; Lin, C. W.; Lu, C. W.; Chen, C. P.; Chang, Y. J. Dual-Functional Enantiomeric Compounds as Hole-Transporting Materials and Interfacial Layers in Perovskite Solar Cells. ACS Appl Mater Interfaces 2022, 14 (22), 26135–26147. https://doi.org/10.1021/acsami.2c03025. (121)Wang, S.; Cabreros, A.; Yang, Y.; Hall, A. S.; Valenzuela, S.; Luo, Y.; Correa-Baena, J. P.; Kim, M. cheol; Fjeldberg, Ø.; Fenning, D. P.; Meng, Y. S. Impacts of the Hole Transport Layer Deposition Process on Buried Interfaces in Perovskite Solar Cells. Cell Rep Phys Sci 2020, 1 (7), 100103. https://doi.org/10.1016/J.XCRP.2020.100103. (122)Fu, Y.; Li, Y.; Xing, G.; Cao, D. Surface Passivation of Perovskite with Organic Hole Transport Materials for Highly Efficient and Stable Perovskite Solar Cells. Mater Today Adv 2022, 16. https://doi.org/10.1016/j.mtadv.2022.100300. (123)Vasilopoulou, M.; Fakharuddin, A.; Coutsolelos, A. G.; Falaras, P.; Argitis, P.; Yusoff, A. R. B. M.; Nazeeruddin, M. K. Molecular Materials as Interfacial Layers and Additives in Perovskite Solar Cells. Chemical Society Reviews. Royal Society of Chemistry July 7, 2020, pp 4496–4526. https://doi.org/10.1039/c9cs00733d. (124)Bhattarai, S.; Mhamdi, A.; Hossain, I.; Raoui, Y.; Pandey, R.; Madan, J.; Bouazizi, A.; Maiti, M.; Gogoi, D.; Sharma, A. A Detailed Review of Perovskite Solar Cells: Introduction, Working Principle, Modelling, Fabrication Techniques, Future Challenges. Micro and Nanostructures. Elsevier Ltd December 1, 2022. https://doi.org/10.1016/j.micrna.2022.207450. (125)Miao, X.; Wang, S.; Sun, W.; Zhu, Y.; Du, C.; Ma, R.; Wang, C. Room-Temperature Electrochemical Deposition of Ultrathin CuO x Film as Hole Transport Layer for Perovskite Solar Cells. Scr Mater 2019, 165, 134–139. https://doi.org/10.1016/j.scriptamat.2019.02.032. (126)Li, Z.; Tong, Y.; Ren, J.; Sun, Q.; Tian, Y.; Cui, Y.; Wang, H.; Hao, Y.; Lee, C. S. Fluorinated Triphenylamine-Based Dopant-Free Hole-Transporting Material for High-Performance Inverted Perovskite Solar Cells. Chemical Engineering Journal 2020, 402. https://doi.org/10.1016/j.cej.2020.125923. (127)Liu, G.; Liu, Z.; Wang, L.; Xie, X. An Organic-Inorganic Hybrid Hole Transport Bilayer for Improving the Performance of Perovskite Solar Cells. Chem Phys 2021, 542. https://doi.org/10.1016/j.chemphys.2020.111061. (128)Wang, S. Y.; Chen, C. P.; Chung, C. L.; Hsu, C. W.; Hsu, H. L.; Wu, T. H.; Zhuang, J. Y.; Chang, C. J.; Chen, H. M.; Chang, Y. J. Defect Passivation by Amide-Based Hole-Transporting Interfacial Layer Enhanced Perovskite Grain Growth for Efficient p-i-n Perovskite Solar Cells. ACS Appl Mater Interfaces 2019, 11 (43), 40050–40061. https://doi.org/10.1021/acsami.9b13952. (129)Zhou, Q.; Ma, W.; Zhang, Z.; Liu, Y.; Zhang, H.; Mao, Y. Double-Layered Hole Transport Material of CuInS2/Spiro for Highly Efficient and Stable Perovskite Solar Cells. Org Electron 2021, 96. https://doi.org/10.1016/j.orgel.2021.106249.
|