Amadei, A.M.; Laurentiis, V.D.; Sala, S., (2021). A review of monetary valuation in life cycle assessment: State of the art and future needs. Journal of Cleaner Production, 329, 129668.
Badagha, D.; Modhera, C.D., (2017). M55 Grade concrete using industrial waste to minimize cement content incorporating CO2 emission concept: an experimental investigation. Materials Today:Proceedings, 4(9), 9768-9772.
Batuecas, E.; Ramón-Álvarez, I.; Sánchez-Delgado, S.; Torres-Carrasco, M., (2021). Carbon footprint and water use of alkali-activated and hybrid cement mortars. Journal of Cleaner Production, 319, 128653.
Bruyn, S D.; Bijleveld, M.; Graaff,L D.; Schep, E.; Schroten, A.; Vergeer, R.; Ahdour, S., (2018). Environmental prices handbook.
Baulies, X.; Szejwach, G., (1998). LUCC data requirements workshop: survey of needs gaps and priorities on data for land-use/land-cover.Change Research, Barcelona,3, 11-14.
Damgaard, A.; Manfredi, S.; Merrild, H., Stensøe, S.; Christensen, T.H., (2011). LCA and economic evaluation of landfill leachate and gas technologies. Waste Management, 31(7), 1532-1541.
Gursel, A.P.; Masanet, E.; Horvath, A.; Stadel, A., (2014). Life-cycle inventory analysis of concrete production: a critical review. Cement and Concrete Composites, 51, 38-48.
Hong, J.; Li, X., (2011). Environmental assessment of sewage sludge as secondary raw material in cement production–a case study in China. Waste Management, 31(6), 1364-1371.
Hong, G.B.; Huang, C.F.; Lin, H.C.; Pan, T.C., (2018). Strategies for the utilization of alternative fuels in the cement industry. Carbon Management, 9(1), 95-103.
Huijbregts, M.A.; Steinmann, Z.J.; Elshout, P.M.; Stam, G.; Verones, F.; Vieira, M.D.M.; Zelm V.R., (2016). ReCiPe 2016: a harmonized life cycle impact assessment method at midpoint and endpoint level Report I: characterization.
Hasanbeigi, A.; Price, L.; Lin, E., (2012). Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review. Renewable and Sustainable Energy Reviews, 16(8), 6220-6238.
Hossain, M.U.; Poon, C.S.; Lo, I.M.C.; Cheng, J.C.P., (2017). Comparative lca on using waste materials in the cement industry: A hong kong case study. Resources, Conservation and Recycling, 120, 199-208.
IEA, W., (2018). Technology roadmap: low-carbon transiton in the cement industry.
International Organization for Standardization., (2006). Environmental Management: life cycle assessment; Principles and Framework.
Irshidat, M.R.; Al-Nuaimi, N.; Ahmed, W.; Rabie, M., (2021). Feasibility of recycling waste carbon black in cement mortar production : environmental life cycle assessment and performance evaluation. Construction and Building Materials, 296, 123740.
ISO, I., (2006). 14040: Environmental management—life cycle assessment—principles and framework, International Standards Organization: Geneva.
Jaiboon, N.; Wongsapai, W.; Daroon, S.; Bunchuaidee, R.; Ritkrerkkrai, C.; Damrongsak, D., (2021). Greenhouse gas mitigation potential from waste heat recovery for power generation in cement industry: the case of thailand. Energy Reports, 7, 638-643.
Kara, M., (2012). Environmental and economic advantages associated with the use of RDF in cement kilns. Resources.Conservation and Recycling, 68, 21-28
Kosajan, V.; Wen, Z.; Fei, F.; Dinga, C.D.; Wang, Z.; Zhan, J., (2020). The feasibility analysis of cement kiln as an MSW treatment infrastructure: From a life cycle environmental impact perspective. Journal of Cleaner Production, 267, 122113.
Kosajan, V.; Wen, Z.; Fei, F.; Dinga, C.D.; Wang, Z.; Liu, P., (2021). Comprehensive assessment of cement kiln co-processing under MSW sustainable management requirements. Resources, Conservation and Recycling, 174, 105816.
Kusuma, R.T.; Hiremath, R.B.; Rajesh, P.; Kumar, B.; Renukappa, S., (2022). Sustainable transition towards biomass-based cement industry: A review. Renewable and Sustainable Energy Reviews, 163, 112503.
Lamnatou, C.; Chemisana, D., (2015). Evaluation of photovoltaic-green and other roofing systems by means of ReCiPe and multiple life cycle–based environmental indicators. Building and Environment, 93, 376-384.
Li, J.; Tharakan, P.; Macdonald, D.;Liang, X., (2013). Technological,economic and financial prospects of carbon dioxide capture in the cement industry. Energy Policy, 61, 1377-1387.
Liu, Y.; Li, H.; Huang,S.; An, H.; Santagata, R.; Ulgiati, S., (2020). Environmental and economic-related impact assessment of iron and steel production. A call for shared responsibility in global trade. Journal of Cleaner Production, 269, 122239.
Lu, X.; Ye, Z.; Zhang, L.; Hou, P.; Cheng, X., (2017). The influence of ethanol-diisopropanolamine on the hydration and mechanical properties of Portland cement. Construction and Building Materials, 135, 484-489.
Li, Y.; Liu, Y.; Gong, X.; Nie, Z.; Cui, S.; Wang, Z.; Chen, W., (2016). Environmental impact analysis of blast furnace slag applied to ordinary Portland cement production. Journal of Cleaner Production, 120, 221-230.
Mark, G.; Reinout, H.; Mark, H.; Schryver, A.D.; Struijs, J.; Zelm, R.V., (2009). ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level.
Perčić, M.; Vladimir, N.; Jovanović, I.; Koričan, M., (2022). Application of fuel cells with zero-carbon fuels in short-sea shipping. Applied Energy, 309, 118463.
Paul, B. K.; Rashid, H., (2017). Chapter six-Land use change and coastal management. In Climatic Hazards in Coastal Bangladesh. Non-Structural and Structural Solutions, 183-207.
PRé., (2019). SimaPro database manual. retrieved from
Ren, C.; Wang, W.; Mao, Y.; Yuan, X.; Song, Z.; Sun, J.; Zhao, X., (2017). Comparative life cycle assessment of sulfoaluminate clinker production derived from industrial solid wastes and conventional raw materials. Journal of Cleaner Production, 167, 1314-1324.
Shahraeeni, M.; Ahmed, S.; Malek, K.; Van Drimmelen, B.; Kjeang, E., (2015). Life cycle emissions and cost of transportation systems: Case study on diesel and natural gas for light duty trucks in municipal fleet operations. Journal of Natural Gas Science and Engineering, 24, 26-34.
Thwe, E.; Khatiwada, D.; Gasparatos, A., (2021). Life cycle assessment of a cement plant in Naypyitaw,Myanmar. Cleaner Environmental Systems, 2, 100007.
Tiamgne, X.T.; Kalaba, F.K.; Nyirenda, V.R., (2021). Land use and cover change dynamics in zambia's solwezi copper mining district. Scientific African, 14, e01007.
Tosti, L.; Zomeren, V.A.; Pels, J.R.; Damgaard, A.; Comans, R.N.J., (2020). Life cycle assessment of the reuse of fly ash from biomass combustion as secondary cementitious material in cement products. Journal of Cleaner Production, 245, 118937.
Usón, A.A.; López-Sabirón, A.M.; Ferreira, G ; Sastresa, E.L., (2013). Uses of alternative fuels and raw materials in the cement industry as sustainable waste management options. Renewable and Sustainable Energy Reviews, 23, 242-260.
Varas, M.J.; Buergo, D.M.A.; Fort, R., (2005). The origin and development of natural cements: the spanish experience. Construction and Building Materials, 21(2), 436-445.
Worlanyo, A.S.; Jiangfeng, L., (2021). Evaluating the environmental and economic impact of mining for post-mined land restoration and land-use: a review. Journal of Environmental Management, 279, 111623.
Yan, K.; Xu, H.; Shen, G.; Liu, P., (2013). Prediction of splitting tensile strength from cylinder compressive strength of concrete by support vector machine. Advances in Materials Science and Engineering,2013,597257.
Yan, D.; Peng, Z.; Karstensen, K.H.; Ding, Q.; Wang, K.; Wang, Z., (2014). Destruction of DDT wastes in two preheater/precalciner cement kilns in China. Science of the Total Environment, 476, 250-257.
Zhang, J.; Cheng, J.C.; Lo, I., (2014). Life cycle carbon footprint measurement of portland cement and ready mix concrete for a city with local scarcity of resources like Hong Kong. The International Journal of Life Cycle Assessment, 19(4), 745-757.
黃兆龍,1997。混凝土性質與行為,詹氏書局。
林珊如,2002。高科技產業氟化鈣污泥做為水泥生料之可行性研究,國立交通大學,碩士論文。楊盛行、林正芳、林鴻祺,2003。廢棄物處理與再利用,國立空中大學出版。
江玄政,2003。生命週期評估技術應用之介紹,環保資訊月刊,第57期。
李文慶,2005。高分子製造業氟化鈣污泥再利用之可行性研究,國立屏東科技大學,碩士論文。林東燦,2006。污泥類廢棄物取代部分水泥原料燒製環保水泥之可行性研究,國立中央大學,碩士論文。
謝政宏,2006。晶圓廠含氟廢水加藥模式之探討,國立交通大學,碩士論文。馮炳勳,2006。台灣水泥業因應二氧化碳排放減量策略之研究,國立成功大學,博士論文。蔡明富,2008。再生水泥製程之研究,高苑科技大學,碩士論文。內政部建築研究所,2008。焚化廠反應灰及飛灰再生為輕質粒料之研究。
李孟翰,2009。前處理程序對於垃圾焚化飛灰再利用為水泥取代料之研究,淡江大學,碩士論文。顏己喨,2011。應用廢棄污泥製造水泥系材料之整合研究,國立中央大學,博士論文。郝成偉、鄧敏、莫立武、劉開偉,2011。飛灰對水泥漿體自收縮和抗壓強度的影響,建築材料學報,14(6),746-751。
許智威,2012。混凝土環境衝擊評估,大葉大學,碩士論文。周文臣、龔國慶、徐榮蔚,2015。石灰石加速風化法:解決電廠二氧化碳排放的救星?,國立臺灣海洋大學海洋中心,海洋中心電子報第二十期。
黃泰元,2015。焚化飛灰再利用情境之特性與生命週期評估,國立臺灣大學,碩士論文。黃歆瑜,2016。我國循環經濟發展與資源回收再利用趨勢研究-以鋼鐵業事業廢棄物為例,國立台北大學,碩士論文。經濟部工業局,2016。電弧爐煉鋼還原碴安定化技術手冊。
經濟部工業局,2017。能源密集產業低碳製程典範案例彙編-水泥業。
環保署,2018。溫室氣體盤查作業常見問題與系統更新說明。
吳怡靚,2018。以循環經濟評估水泥製造業協同處理一般廢棄物之經濟、環境、能源供給最適方案,國立台北大學,碩士論文。鄭為珊、丁俊元、陳建緯,2018。循環經濟的發展與應用—水泥篇,科學發展,543期,21-29頁。
宋哲宏,2018。綠色水泥質材料使用灰碴特性及效益之研究,國立台灣海洋大學,博士論文。行政院環境保護署,2019。溫室氣體管理基金管理會第2次管理會會議資料。
台灣電力股份有限公司,2019。煤灰多元化再利用研究報告。
黃柔恩,2019。前處理程序對垃圾焚化飛灰固化掩埋降低長期環境危害之研究,淡江大學,碩士論文。盧咨縈,2019。探究循環經濟下的價值共創:以台灣水泥和平廠為例,國立成功大學,碩士論文。鄭瑞濱、江世哲,2019。鋼鐵爐碴應用為水泥生料的實踐,土木水利,46卷,5期,第14-19頁。
蔡文博、鄭大偉、黃兆龍,2019。鋼鐵爐碴之循環應用-電弧爐煉鋼還原碴再利用,土木水利,第四十六卷-第五期。
蔣秉洋,2020。不鏽鋼還原碴及飛灰部分取代水泥製成水泥(砂)漿工程性質及耐久性之研究,國立高雄科技大學,碩士論文。水泥窯作為資源循環中心評估專案計畫,2021。國立成功大學。
日本水泥協會,2021。取自: https://www.jcassoc.or.jp/seisankankyo/seisan01/seisan01a.html
財團法人工業技術研究院,水泥業能源效率分析,2021。