|
[1]Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, vol. 8, no. 3, pp. 338-353. [2]Atanassov, K. (1986). Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems, vol. 20, no. 1, pp. 87-96. [3]Nguyen, A. & Taniguchi, T. & Eciolaza, L.& Campos, V.& Palhares, R. and Sugeno, M. (2019). Fuzzy Control Systems: Past present and Future. IEEE Comput. Intell. Mag., vol. 14, no. 1, pp. 56-68. [4]L. Liu, Y. Luo, X. Shen, M. Sun and B. Li, (2019) β-Dropout: A Unified Dropout. IEEE Access, vol. 7, pp. 36140-36153, doi: 10.1109/ACCESS.2019.2904881. [5]Mamdani, E. H. (1974). Application of Fuzzy Algorithms for Control of Simple Dynamic Plant. Proceedings of the Institution of Electrical Engineers, vol. 121, no. 12, pp. 1585-1588. [6]Mendel, J. M. (1995). Fuzzy Logic Systems for Engineering: A Tutorial. Proceedings of the IEEE, vol. 83, no. 3, pp. 345-377. [7]Klir, G. J. & Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall. [8]Bezdek, J. C. & Pal, N. R. (1992). Fuzzy Models for Pattern Recognition: Methods that Search for Structures in Data. IEEE Press selected reprint series. [9]Takagi, T. and Sugeno, M. (1985). Fuzzy Identification of Systems and Its Applications to Modeling and Control. IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-15, no. 1, pp. 116-132, Jan.-Feb. doi: 10.1109/TSMC.1985.6313399. [10]Terziyska, M. Todorov, Y. Doneva, M. et al. (2019). Distributed Adaptive Neuro Intuitionistic Fuzzy Architecture for prediction of the dose in gamma irradiated milk products. IFAC-PapersOnLine. Vol. 52, No. 25. pp. 75-80. [11]Hajek, P. & Olej, V. (2014). Defuzzification Methods in Intuitionistic Fuzzy Inference Systems of Takagi-Sugeno Type: The Case of Corporate Bankruptcy Prediction, 2014 11th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Xiamen, China, pp. 232-236, doi: 10.1109/FSKD.2014.6980838. [12]Hájek, P. & Olej, V. (2017). Intuitionistic Neuro-Fuzzy Network with Evolutionary Adaptation. Evolving Systems, vol. 8, pp. 35–47 [13]D. Wu & Y. Yuan & J. Huang and Y. Tan, (2020). Optimize TSK Fuzzy Systems for Regression Problems: Minibatch Gradient Descent with Regularization, DropRule, and AdaBound (MBGD-RDA), in IEEE Transactions on Fuzzy Systems, vol. 28, no. 5, pp. 1003-1015, doi: 10.1109/TFUZZ.2019.2958559. [14]Hinton, G. E. & Srivastava, N. & Krizhevsky, A. & Sutskever, I. and Salakhutdinov. R. R. (2012). Improving Neural Networks by Preventing Co-adaptation of Feature Detectors. Department of Computer Science, University of Toronto, Canada. [15]Srivastava, N. & Hinton, G. & Krizhevsky, A. & Sutskever, I. and. Salakhutdinov, R. (2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting, J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958 [16]Wan, L. & Zeiler, M. & Zhang, S. & Le Cun, Y. and Fergus, R. (2013). Regularization of Neural Networks using Dropconnect, in Proc. Int. Conf. Mach. Learn, pp. 1058–1066. [17]Wang, S. and Manning, C. (2013). Fast Dropout Training, in Proc. Int. Conf. Mach. Learn., pp. 118–126. [18]Ba, J. and Frey, B. (2013). Adaptive Dropout for Training Deep Neural Networks, in Proc. Proc. Adv. Neural Inf. Process. Syst., pp. 3084–3092. [19]Rennie, S. J. & Goel, V. and Thomas, S. (2014). Annealed Dropout Training of Deep Networks, in Proc. IEEE Spoken Lang. Technol. Workshop (SLT), pp. 159–164. [20]Kingma, D. P. & Salimans, T. and Welling, M. (2015) Variational Dropout and The Local Reparameterization Trick, in Proc. Adv. Neural Inf. Process. Syst., pp. 2575–2583. [21]Morerio, P. & Cavazza, J. & Volpi, R. & Vidal, R. and Murino, V. (2017). Curriculum Dropout. [22]Li, Z. & Gong, B. and Yang, T. (2016) Improved Dropout for Shallow and Deep Learning, in Proc. Adv. Neural Inf. Process. Syst., pp. 2523–2531. [23]Li, Y. & Xu, R. and Liu. F. (2016). Whiteout: Gaussian Adaptive Noise Regularization in Deep Neural Networks. arXiv:1612.01490. [24]Srinivas, S. and Babu, R. V. (2016). Generalized Dropout. arXiv:1611.06791. [25]Tsukamoto, Y. (1979). An Approach to Fuzzy Reasoning Method, in M. M. Gupta, R. K. Ragade, and R. R. Yager, Eds., Advances in Fuzzy Set Theory and Applications. Amsterdam: North-Holland, pp. 137-149. [26]Lee, C.C. (1990). Fuzzy Logic in Control Systems: Fuzzy Logic Controller-Part I, IEEE Trans. Syst., Man, Cybern., vol. 20, pp. 404418. [27]Cybern, Man. (1990). Fuzzy Logic in Control Systems: Fuzzy Logic Controller-Part I, IEEE Trans. Syst., vol. 20, pp. 419435. [28]Takagi, T. and Sugeno, M. (1983). Derivation of Fuzzy Control Rules from Human Operator’s Control Actions, in Proc. IFAC Symp. Fuzzy Inform., Knowledge Representation and Decision Analysis, pp. 55-60. [29]Baldi, P. and Sadowski, P. (2014). The Dropout Learning Algorithm, Artif. Intell., vol. 210, pp. 78–122. [30]Jang, J-SR. (1993). ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE transactions on systems, man, and cybernetics, vol. 23, no. 3, pp. 665-685. [31] Zadeh, L. A. (1973) “Outline of a new approach to the analysis of complex systems and decision processes,” IEEE Trans. Syst., Man, Cybern., vol. 3, pp. 28-44. [32]Wang, L.-X. (1992). Fuzzy Systems Are Universal Approximators, in Proc. IEEE Int. Conf Fuzzy Systems, San Diego, CA. [33]Haldane, J. B. S. (1932). A Note on Inverse Probability, in Mathematical Proceedings of the Cambridge Philosophical Society, vol. 28, no. 1. Cambridge, U.K.: Cambridge Univ. Press, pp. 55–61. [34]Bayes, T. and Price, R. (1763). An Essay Towards Solving a Problem in The Doctrine of Chances. By the late rev. Mr. Bayes, communicated by Mr. Price, in a letter to John Canton, M. A. and F. R. S, Philosoph. Trans. Roy. Soc. London, vol. 53, pp. 370–418. [35]Kingma, D. P. and Ba, J. (2015). Adam: A Method for Stochastic Optimization in Proc. 3rd Int’l Conf. on Learning Representations, San Diego, CA. [36]Duchi, J. & Hazan, E. and Singer, Y. (2011). Adaptive Subgradient Methods for Online Learning and Stochastic Optimization, Journal of Machine Learning Research, vol. 12, pp. 2121–2159. [37]Tieleman, T. and Hinton, G. (2012). Lecture 6.5–RMSProp: Divide the Gradient by A Running Average of Its Recent Magnitude, COURSERA: Neural Networks for Machine Learning, vol. 4, no. 2, pp. 26–31. [38]Luo, L. & Xiong, Y. & Liu, Y. & and Sun, X. (2019). Adaptive Gradient Methods with Dynamic Bound of Learning Rate, arXiv preprint arXiv:1902.09843. [39]Birkhioff, G. (1948). Lattice Theory, Am. Math. Soc. Colloq. Publ., vol. 25, New York. [40]Nakasima-Lpez, S. & Castro, J. R. & Sanchez, M. A. & Mendoza, O. and Rodrguez-Daz, A. (2019). An Approach on the Implementation of Full Batch, Online and Mini-Batch Learning On a Mamdani Based Neuro-Fuzzy System with Center-of-Sets Defuzzification: Analysis and Evaluation About Its Functionality, Performance, and Behavior, PLOS ONE, vol. 14, no. 9, pp. 1–40. [41]Wang, L. & Ye, J. (1998). Extracting fuzzy rules for system modeling using a hybrid of genetic algorithms and Kalman filter. Fuzzy Set Syst., vol. 101, pp. 353-362. [42]Lughofer, E. and Kindermann, S. (2008). Improving The Robustness of Data-driven Fuzzy Systems with Regularization, in Proc. IEEE Int’l Conf. on Fuzzy Systems, Hong Kong, China, pp. 703–709. [43]Johansen, T. A. (1996). Robust Identification of Takagi-Sugeno-Kang Fuzzy Models Using Regularization, in Proc. 5th IEEE Int’l Conf. on Fuzzy Systems, New Orleans, LA, pp. 180–193. [44]Jin, Y. (2000). Fuzzy Modeling of High-Dimensional Systems: Complexity Reduction and Interpretability Improvement, IEEE Trans. on Fuzzy Systems, vol. 8, no. 2, pp. 212–221. [45]Lughofer, E. and Kindermann, S. (2010). SparseFIS: Data-Driven Learning of Fuzzy Systems with Sparsity Constraints, IEEE Trans. on Fuzzy Systems, vol. 18, no. 2, pp. 396–411. [46]Luo, M. & Sun, F. and Liu, H. (2015). Dynamic T-S Fuzzy Systems Identification Based on Sparse Regularization, Asian Journal of Control, vol. 17, no. 1, pp. 274–283. [47]Wang, L.-X. and Mendel, J. M. (1992). Fuzzy Basis Function, Universal Approximation, And Orthogonal Least Squares Larning, IEEE Trans. Neural Networks, vol. 3 no. 5, pp. 807-814. [48]Angelov, P. (1995). Crispification: Defuzzification Over Intuitionistic Fuzzy Sets, vol. 64, pp. 51–55. [49]Akram MS, Habib S, Javed I (2014). Intuitionistic Fuzzy Logic Control for Washing Machines. Indian J. Sci. Technol., vol. 7, no. 5, pp. 654–661. [50]Barrenechea, E (2009). Generalized Atanassov’s Intuitionistic Fuzzy Index. Construction Method. IFSA-EUSFLAT, Lisbon, pp. 478–482.
|