|
[1]R. Pinnataip, B.P. Lee, Oxidation chemistry of catechol utilized in designing stimuli-responsive adhesives and antipathogenic biomaterials, ACS omega 6 (2021) 5113-5118. [2]P.K. Forooshani, B.P. Lee, Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein, Journal of Polymer Science Part A: Polymer Chemistry 55 (2017) 9-33. [3]J.H. Ryu, P.B. Messersmith, H. Lee, Polydopamine surface chemistry: a decade of discovery, ACS applied materials & interfaces 10 (2018) 7523-7540. [4]H. Lee, J. Rho, P.B. Messersmith, Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings, Advanced materials 21 (2009) 431-434. [5]H.W. Chien, W.H. Kuo, M.J. Wang, S.W. Tsai, W.B. Tsai, Tunable micropatterned substrates based on poly (dopamine) deposition via microcontact printing, Langmuir 28 (2012) 5775-5782. [6]Z. Deng, B. Shang, B. Peng, Polydopamine based colloidal materials: synthesis and applications, The Chemical Record 18 (2018) 410-432. [7]H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings, science 318 (2007) 426-430. [8]S. Razaviamri, K. Wang, B. Liu, B.P. Lee, Catechol-based antimicrobial polymers, Molecules 26 (2021) 559. [9]M. Li, J. Xu, C.Y. Chang, C. Feng, L. Zhang, Y. Tang, C. Gao, Bioinspired fabrication of composite nanofiltration membrane based on the formation of DA/PEI layer followed by cross-linking, Journal of Membrane Science 459 (2014) 62-71. [10]J. Yang, V. Saggiomo, A.H. Velders, M.A.C. Stuart, M. Kamperman, Reaction pathways in catechol/primary amine mixtures: a window on crosslinking chemistry, PloS one 11 (2016) e0166490. [11]L. Liu, R. Cai, Y. Wang, G. Tao, L. Ai, P. Wang, M. Yang, H. Zuo, P. Zhao, H. He, Polydopamine-assisted silver nanoparticle self-assembly on sericin/agar film for potential wound dressing application, International journal of molecular sciences 19 (2018) 2875. [12]W.Z. Qiu, H.C. Yang, Z.K. Xu, Dopamine-assisted co-deposition: an emerging and promising strategy for surface modification, Advances in Colloid and Interface Science 256 (2018) 111-125. [13]Y. Zhang, B. Thingholm, K.N. Goldie, R. Ogaki, B. Städler, Assembly of poly (dopamine) films mixed with a nonionic polymer, Langmuir 28 (2012) 17585-17592. [14]M. Mateescu, M.H. Metz-Boutigue, P. Bertani, V. Ball, Polyelectrolytes to produce nanosized polydopamine, Journal of colloid and interface science 469 (2016) 184-190. [15]C. Zhao, F. Zuo, Z. Liao, Z. Qin, S. Du, Z. Zhao, Mussel‐Inspired one‐pot synthesis of a fluorescent and water‐soluble polydopamine–polyethyleneimine copolymer, Macromolecular Rapid Communications 36 (2015) 909-915. [16]M. Ismail, S. Gul, M.A. Khan, M. Khan, Plant mediated green synthesis of anti-microbial silver nanoparticles-a review on recent trends, Rev. Nanosci. Nanotechnol 5 (2016) 119-135. [17]S.H. Lee, B.H. Jun, Silver nanoparticles: synthesis and application for nanomedicine, International journal of molecular sciences 20 (2019) 865. [18]A. Al-Warthan, K.M.M.A. El-Nour, A. Eftaiha, R.A.A. Ammar, Synthesis and applications of silver nanoparticles, Arabian J Chem 3 (2010) 135-140. [19]K. Kalishwaralal, V. Deepak, S. Ramkumarpandian, H. Nellaiah, G. Sangiliyandi, Extracellular biosynthesis of silver nanoparticles by the culture supernatant of bacillus licheniformis, Materials letters 62 (2008) 4411-4413. [20]C. Haefeli, C. Franklin, K. Hardy, Plasmid-determined silver resistance in pseudomonas stutzeri isolated from a silver mine, Journal of bacteriology 158 (1984) 389-392. [21]T. Klaus, R. Joerger, E. Olsson, C. Granqvist, Silver-based crystalline nanoparticles, microbially fabricated, Proceedings of the National Academy of Sciences 96 (1999) 13611-13614. [22]A.K. Jha, K. Prasad, K. Prasad, A.R. Kulkarni, Plant system: nature's nanofactory, Colloids and Surfaces B: Biointerfaces 73 (2009) 219-223. [23]N. Budisa, T. Schneider, Expanding the dopa universe with genetically encoded, mussel‐inspired bioadhesives for material sciences and medicine, ChemBioChem 20 (2019) 2163-2190. [24]G.A. Sotiriou, A. Meyer, J.T. Knijnenburg, S. Panke, S.E. Pratsinis, Quantifying the origin of released Ag+ ions from nanosilver, Langmuir 28 (2012) 15929-15936. [25]T.C. Dakal, A. Kumar, R.S. Majumdar, V. Yadav, Mechanistic basis of antimicrobial actions of silver nanoparticles, Frontiers in microbiology 16 (2016) 1831. [26]A. Kędziora, M. Speruda, E. Krzyżewska, J. Rybka, A. Łukowiak, G. Bugla-Płoskońska, Similarities and differences between silver ions and silver in nanoforms as antibacterial agents, International journal of molecular sciences 19 (2018) 444. [27]A. Ausili, M. Sánchez, J.C. Gómez-Fernández, Attenuated total reflectance infrared spectroscopy: A powerful method for the simultaneous study of structure and spatial orientation of lipids and membrane proteins, Biomedical Spectroscopy and Imaging 4 (2015) 159-170. [28]H.W. Chien, C.J. Kuo, L.H. Kao, G.Y. Lin, P.Y. Chen, Polysaccharidic spent coffee grounds for silver nanoparticle immobilization as a green and highly efficient biocide, International journal of biological macromolecules 140 (2019) 168-176. [29]M. Hassan, R. Abou-Zeid, E. Hassan, L. Berglund, Y. Aitomäki, K. Oksman, Membranes based on cellulose nanofibers and activated carbon for removal of Escherichia coli bacteria from water, Polymers 9 (2017) 335. [30]X. Zeng, D.T. McCarthy, A. Deletic, X. Zhang, Silver/reduced graphene oxide hydrogel as novel bactericidal filter for point‐of‐use water disinfection, Advanced Functional Materials 25 (2015) 4344-4351. [31]H.W. Chien, Y.Y. Chen, Y.L. Chen, C.H. Cheng, J.C. Lin, Studies of PET nonwovens modified by novel antimicrobials configured with both N-halamine and dual quaternary ammonium with different alkyl chain length, RSC Advances 9 (2019) 7257-7265. [32]J.J. Feng, P.P. Zhang, A.J. Wang, Q.C. Liao, J.L. Xi, J.R. Chen, One-step synthesis of monodisperse polydopamine-coated silver core–shell nanostructures for enhanced photocatalysis, New Journal of Chemistry 36 (2012) 148-154. [33]N.F.D. Vecchia, A. Luchini, A. Napolitano, G. D’Errico, G. Vitiello, N. Szekely, M. d’Ischia, L. Paduano, Tris buffer modulates polydopamine growth, aggregation, and paramagnetic properties, Langmuir 30 (2014) 9811-9818. [34]Y. Lv, S.J. Yang, Y. Du, H.C. Yang, Z.K. Xu, Co-deposition kinetics of polydopamine/polyethyleneimine coatings: Effects of solution composition and substrate surface, Langmuir 34 (2018) 13123-13131. [35]S. Kobayashi, K. Hiroishi, M. Tokunoh, T. Saegusa, Chelating properties of linear and branched poly (ethylenimines), Macromolecules 20 (1987) 1496-1500. [36]F. Wang, D.K. Chatterjee, Z. Li, Y. Zhang, X. Fan, M. Wang, Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence, Nanotechnology 17 (2006) 5786. [37]M.N. Costa, B. Veigas, J.M. Jacob, D.S. Santos, J. Gomes, P.V. Baptista, R. Martins, J. Inácio, E. Fortunato, A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing: lab-on-paper, Nanotechnology 25 (2014) 094006. [38]C. Krishnaraj, E.G. Jagan, S. Rajasekar, P. Selvakumar, P.T. Kalaichelvan, N.J.C.S.B.B. Mohan, Synthesis of silver nanoparticles using acalypha indica leaf extracts and its antibacterial activity against water borne pathogens, Colloids and Surfaces B: Biointerfaces 76 (2010) 50-56. [39]H. Kang, X. Song, Z. Wang, W. Zhang, S. Zhang, J. Li, High-performance and fully renewable soy protein isolate-based film from microcrystalline cellulose via bio-inspired poly (dopamine) surface modification, ACS Sustainable Chemistry & Engineering 4 (2016) 4354-4360. [40]Q. Xu, Q. Kong, Z. Liu, J. Zhang, X. Wang, R. Liu, L. Yue, G. Cui, Polydopamine-coated cellulose microfibrillated membrane as high performance lithium-ion battery separator, Rsc Advances 4 (2014) 7845-7850. [41]Z. Iqbal, E.P.C. Lai, T.J. Avis, Antimicrobial effect of polydopamine coating on escherichia coli, Journal of Materials Chemistry 40 (2012) 21608-21612. [42]L. Su, Y. Yu, Y. Zhao, F. Liang, X. Zhang, Strong antibacterial polydopamine coatings prepared by a shaking-assisted method, Scientific reports 6 (2016) 1-8. [43]T.J. Beveridge, Structures of gram-negative cell walls and their derived membrane vesicles, Journal of bacteriology 181 (1999) 4725-4733. [44]J.Y. Zhu, J. Hou, Y. Zhang, M. Tian, T. He, J. Liu, V. Chen, Polymeric antimicrobial membranes enabled by nanomaterials for water treatment, Journal of Membrane Science 550 (2018) 173-197. [45]D. Annur, Z.K. Wang, J.D. Liao, C. Kuo, Plasma-synthesized silver nanoparticles on electrospun chitosan nanofiber surfaces for antibacterial applications, Biomacromolecules 16 (2015) 3248-3255. [46]W.K. Son, J.H. Youk, T.S. Lee, W.H. Park, Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles, Macromolecular rapid communications 25 (2004) 1632-1637. [47]M.I. Shekh, N.N. Patel, K.P. Patel, R.M. Patel, A. Ray, Nano silver-embedded electrospun nanofiber of poly (4-chloro-3-methylphenyl methacrylate): use as water sanitizer, Environmental Science and Pollution Research 24 (2017) 5701-5716. [48]A. Celebioglu, F. Topuz, Z.I. Yildiz, T. Uyar, One-step green synthesis of antibacterial silver nanoparticles embedded in electrospun cyclodextrin nanofibers, Carbohydrate polymers 207 (2019) 471-479. [49]S. Fahimirad, Z. Fahimirad, M. Sillanpää, Efficient removal of water bacteria and viruses using electrospun nanofibers, Science of the Total Environment 751 (2021) 141673. [50]L. Yildirimer, N.T.K. Thanh, M. Loizidou, A.M. Seifalian, Toxicology and clinical potential of nanoparticles, Nano today 6 (2011) 585-607. [51]J. Zhang, W. Guo, Q. Li, Z. Wang, S. Liu, The effects and the potential mechanism of environmental transformation of metal nanoparticles on their toxicity in organisms, Environmental Science: Nano 5 (2018) 2482-2499. [52]S.M. Praveena, A.Z. Aris, Application of low-cost materials coated with silver nanoparticle as water filter in Escherichia coli removal, Water Quality, Exposure and Health 7 (2015) 617-625. [53]L. Jiang, Y. Zhou, Y. Guo, Z. Jiang, S. Chen, J. Ma, Preparation of silver nanoparticle functionalized polyamide fibers with antimicrobial activity and electrical conductivity, Journal of Applied Polymer Science 136 (2019) 47584. [54]M.S. Islam, N. Akter, M.M. Rahmanr, C. Shi, M.T. Islam, H. Zeng, M.S. Azam, Mussel-inspired immobilization of silver nanoparticles toward antimicrobial cellulose paper, ACS Sustainable Chemistry & Engineering 6 (2018) 9178-9188. [55]B. Niu, T. Hua, B. Xu, Robust deposition of silver nanoparticles on paper assisted by polydopamine for green and flexible electrodes, ACS Sustainable Chemistry & Engineering 8 (2020) 12842-12851.
|