|
[1]J. Zhang, Q. Guo, M. Liu and J. Yang, “A lab-on-CD prototype for high-speed blood separation”, Journal of Micromechanics and Microengineering, vol. 18, pp. 125025, 2008. [2]S. Oberti, A. Neild, D. Möller and J. Dual, “Towards the automation of micron-sized particle handling by use of acoustic manipulation assisted by microfluidics”, Ultrasonics, vol. 48, pp. 529-536, 2008. [3]M. C. R. Kong and E. D. Salin, “A Valveless Pneumatic Fluid Transfer Technique Applied To Standard Additions on a Centrifugal Microfluidic Platform”, Analytical Chemistry, vol. 83, pp. 9186-9190, 2011. [4]C. C. Chen, P. H. Lin and C. K. Chung, “Microfluidic chip for plasma separation from undiluted human whole blood samples using low voltage contactless dielectrophoresis and capillary force”, Lab chip, vol. 14, pp. 1996-2001, 2014. [5]H. Shi, K. Nie, B. Dong, L. Chao, F. Gao, M. Ma, M. Long and Z. Liu, “Mixing enhancement via a serpentine micromixer for real-time activation of carboxyl”, Chemical Engineering Journal, vol. 392, pp. 123642, 2020. [6]W. Wang, W. Y. Wu, W. Wang and J. J. Zhu, “Tree-shaped paper strip for semiquantitative colorimetric detection of protein with self-calibration”, Journal of Chromatography A, vol. 1217, pp. 3896-3899, 2010. [7]S. Ma, Y. Tang, J. Jiu and J. Wu, “Visible paper chip immunoassay for rapid determination of bacteria in water distribution system”, Talanta, vol. 120, pp.135-140, 2014. [8]S. O. Reynoso, A. P. Heim, J. H. Black, C. Zhao, I. D. Tevis, S. Çınar, R. Cademartiri, X. Liu, J. F. Bloch and M. M. Thuo, “Reprint of 'Draw your assay: Fabrication of low-cost paper-based diagnostic and multi-well test zones by drawing on a paper'”, Talanta, vol. 145, pp. 73-77, 2015. [9]E. M. Fenton, M.R. Mascarenas, G.P. López and S.S. Sibbett, “Multiplex lateral-flow test strips fabricated by two-dimensional shaping”, ACS Appl. Mater. Interfaces, vol. 1, pp. 124-129, 2009. [10]E. Fu, T. L. P. S. Mihalic, J. H. S. Ramachandran and P. Yager, “Two-Dimensional Paper Network Format That Enables Simple Multistep Assays for Use in Low-Resource Settings in the Context of Malaria Antigen Detection”, Anal Chem, vol. 84, pp. 4574-4579, 2012. [11]C. L. Cassano and Z. H. Fan, “Laminated paper-based analytical devices (LPAD): fabrication, characterization, and assays”, Microfluidics and Nanofluidics, vol. 15, pp. 173-181, 2013. [12]A. K. Yetisen, N. Jiang, A. Tamayol, G. U. R. Esparza, Y. S. Zhang, S. M. Pando, A. Gupta, J. S. Wolffsohn, H. Butt, A. Khademhosseini and S. H. Yun, “Paper-based microfluidic system for tear electrolyte analysis”, Lab on a Chip, vol. 17, pp. 1137-1148, 2017. [13]Y. S. Kim, Y. Yang and C. S. Henry, “Laminated and infused Parafilm®– paper for paper-based analyticaldevices”, Sensors and Actuators B: Chemical, vol. 255, pp.3654-3661, 2018. [14]G. V. Kaigala, S. Ho, R. Penterman and C. J. Backhouse, “Rapid prototyping of microfluidic devices with a wax printer”, Lab on a chip, vol. 7, pp. 384-387, 2007. [15]A. W. Martinez, S. T. Phillips, B. J. Wiley, M. Gupta and G. M. Whitesides, “FLASH: A rapid method for prototyping paper-based microfluidic devices”, Lab on a Chip, vol. 8, pp. 2146-2150, 2008. [16]E. Carrilho, A. W. Martinez and G. M. Whitesides, “Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics”, Anal. Chem, vol. 81, pp. 7091-7095, 2009. [17]P. Rattanarat, W. Dungchai, D. Cate, J. Volckens, O. Chailapkul and C. S. Henry, “Multilayer Paper-Based Device for Colorimetric and Electrochemical Quantification of Metals”, Anal. Chem, vol. 86, pp. 3555-3562, 2014. [18]Y. Zhang, T. Ren and J. He, “Inkjet Printing Enabled Controllable Paper Superhydrophobization and Its Applications”, ACS Applied Materials & Interfaces, vol. 10, pp. 11343-11349, 2018. [19]C. H. Ko, C. C. Liu, K. H. Chen, F. Sheu and L. M. Fu, “Microfluidic colorimetric analysis system for sodium benzoate detection in foods”, Food Chemistry, vol. 345, pp. 128773, 2021. [20]A. W. Martinez, S. T. Phillips, M. J. Butte and G. M. Whitesides, “Patterned Paper as a Platform for Inexpensive, Low Volume, Portable Bioassays”, Angew. Chem. Int. Ed, vol. 43, pp. 1318-1320, 2007. [21]T. Nurak, N. Praphairaksit and O. Chailapakul, “Fabrication of paper-based devices by lacquer spraying method for the determination of nickel (II) ion in waste water”, Talanta, vol. 114, pp. 291-296, 2013. [22]P. S. Mihalic, B. Toley, J. Houghtaling, T. Liang, P. Yager and E. Fu, “CO2 laser cutting and ablative etching for the fabrication of paper-based devices”, Journal of Micromechanics and Microengineering, vol. 20, pp. 067003, 2013. [23]B. Wang, Z. Lin and M. Wang, “Fabrication of a Paper-Based Microfluidic Device To Readily Determine Nitrite Ion Concentration by Simple Colorimetric Assay”, Journal of Chemical Education, vol. 92, pp. 733-736, 2015. [24]J. Dhavamani, L. H. Mujawar and M. S. E. Shahawi, “Hand drawn paper-based optical assay plate for rapid and trace level determination of Ag+ in water”, Sensors and Actuators B: Chemical, vol. 258, pp. 321-330, 2018. [25]Y. Jia, H. Sun, X. Li, D. Sun, T. Hu, N. Xiang and Z. Ni, “Paper-based graphene oxide biosensor coupled with smartphone for the quantification of glucose in oral fluid”, Biomedical Microdevices, vol. 20, pp. 89, 2018. [26]R. Ghosh, S. Gopalakishnan, R. Savitha, T. Renganathan and S. Pushpavanam, “Fabrication of laser printed microfuidic paper-based analytical devices (LP-µPADs) for point-of-care applications”, Scientific Reports, vol. 9, pp. 7896, 2019. [27]C. H. Weng, P. P. Hsu, A. Y. Huang and J. L. Lin, “Paper-Based Microfluidics Perform Mixing Effects by Utilizing Planar Constricted–Expanded Structures to Enhance Chaotic Advection”, Sensors, vol. 22, pp.1028, 2022. [28]T. M. G. Cardoso, F. R. D. Souza, P. T. Garcia, D. Rabelo, C. S. Henry and W. K. T. Coltro, “Versatile fabrication of paper-based microfluidic devices with high chemical resistance using scholar glue and magnetic masks”, Analytica Chimica Acta, vol. 974, pp. 63-68, 2017. [29]C. Y. Hou, L. M. Fu, W. J. Ju and P. Y. Wu, “Microfluidic colorimetric system for nitrite detection in foods”, Chemical Engineering Journal, vol. 398, pp. 125573, 2020. [30]J. T. Wang, Y. Y. Pei, M. Y. Yan, Y. G. Li, G. G. Yang, C. H. Qu, W. Luo, J. Wang and Q. F. Li, “A fast-response turn-on quinoline-based fluorescent probe for selective and sensitive detection of zinc (II) and its application”, Microchemical Journal, vol. 160, pp. 105776, 2021. [31]A. Nilghaz and W. Shen, “Low-cost blood plasma separation method using salt functionalized paper”, RSC Advances, vol. 5, pp.53172-53179, 2015. [32]S. B. Berry, S. C. Fernandes, A. Rajaratanam, N. S. Dechiara and C. R. Mace, “Measurement of the Hematocrit Using a Paper-Based Microfluidic Device”, Lab on a Chip, vol. 16, pp. 3689-3694, 2016. [33]R. J. Yang, C. C. Tseng, W. J. Ju, L. M. Fu and M. P. Syu, “Integrated microfluidic paper-based system for determination of whole blood albumin”, Sensors and Actuators B: Chemical, vol. 273, pp. 1091-1097, 2018. [34]F. B. Flórez, A. Rodríguez, E. Cervera, M. D. Ávila, M. Sanjuán and P. J. Villalba, “Microfluidic Paper-Based Blood Plasma Separation Device as a Potential Tool for Timely Detection of Protein Biomarkers”, Micromachines, vol. 13, pp. 706, 2022. [35]G. K. Batchelor, “An Introduction to Fluid Dynamics,” Cambridge University Press, 2000. [36]B. M. Cummins, R. Chinthapatla, F. S. Ligler, and G. M. Walker, “Time-Dependent Model for Fluid Flow in Porous Materials with Multiple Pore Sizes”, Analytical Chemistry, vol. 89, pp. 4377-4381, 2017. [37]E. W. Washburn, “The Dynamics of Capillary Flow”, Physical Review, vol. 17, pp. 273-283, 1921. [38]R. Masoodi, K. Pillai, “Darcy's Law-Based Model for Wicking in Paper-Like Swelling Porous Media”, AIChE Journal, vol. 9, pp. 2257-2267, 2010. [39]M. L. Choobbari, M. B. Rad, A. Jahanshahi and H. Ghourchian, “A sample volume independent paper microfluidic device for quantifying glucose in real human plasma”, Microfluidics and Nanofluidics, vol. 24, pp. 74, 2020. [40]S. Liu, W. Su and X. Ding, “A Review on Microfluidic Paper-Based Analytical Devices for Glucose Detection”, Sensors, vol. 16, pp. 2086, 2016. [41]Z. Xiao, Z. Feng, Y. Yang, Z. Chen, L. Sun, R. Xu, R. Zeng and W. Guo, “Quantitative Hematocrit Measurement on a Paper Microfluidic Chip Pretreated by Sodium Chloride”, 2022 IEEE 17th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), 14-17 April, 2022. [42]D. Rath and B. J. Toley, “Modelling Guided Design of Paper Microfluidic Networks: A Case Study of Sequential Fluid Delivery”, ACS Sensors, vol. 6, pp. 91-99, 2021.
|