|
參考文獻 [1]A. J. I. Bettinger, "Fintech: A series of 40 time shared models used at Manufacturers Hanover Trust Company," Interfaces, pp. 62-63, 1972. [2]A. V. J. J. o. F. I. Thakor, "Fintech and banking: What do we know?," Journal of Financial Intermediation, vol. 41, p. 100833, 2020. [3]B. Stojanović et al., "Follow the trail: machine learning for fraud detection in Fintech applications," vol. 21, no. 5, p. 1594, 2021. [4]內政部警政署. (2021). 內政統計通報. Available: https://ws.moi.gov.tw/Download.ashx?u=LzAwMS9VcGxvYWQvNDAwL3JlbGZpbGUvOTAwOS8yMTI3MjkvNDVhZDQ1ZTMtMGZhMS00MWZhLTkwODEtOTg4Mzk2ZDY2YjIwLnBkZg%3D%3D&n=MTEw5bm056ysNumAseWFp%2BaUv%2Be1seioiOmAmuWgsV%2Fmsrvlronmg4Xli6IucGRm [5]E. W. Ngai, Y. Hu, Y. H. Wong, Y. Chen, and X. J. D. s. s. Sun, "The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature," Decision support systems, vol. 50, no. 3, pp. 559-569, 2011. [6]M. Ahmed, N. Choudhury, and S. Uddin, "Anomaly detection on big data in financial markets," in 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 2017, pp. 998-1001: IEEE. [7]M. Ahmed, A. N. Mahmood, and M. R. J. F. G. C. S. Islam, "A survey of anomaly detection techniques in financial domain," Future Generation Computer Systems, vol. 55, pp. 278-288, 2016. [8]A. Abdallah, M. A. Maarof, A. J. J. o. N. Zainal, and C. Applications, "Fraud detection system: A survey," vol. 68, pp. 90-113, 2016. [9]N. F. Ryman-Tubb, P. Krause, and W. J. E. A. o. A. I. Garn, "How Artificial Intelligence and machine learning research impacts payment card fraud detection: A survey and industry benchmark," Engineering Applications of Artificial Intelligence, vol. 76, pp. 130-157, 2018. [10]J. West, M. J. C. Bhattacharya, and security, "Intelligent financial fraud detection: a comprehensive review," Computers security, vol. 57, pp. 47-66, 2016. [11]H. C. Han, H. Kim, H. K. J. J. o. T. K. I. o. I. S. Kim, and Cryptology, "Fraud Detection System in Mobile Payment Service Using Data Mining," vol. 26, no. 6, pp. 1527-1537, 2016. [12]C. S. Hilas, P. A. Mastorocostas, I. T. J. A. M. Rekanos, and I. Sciences, "Clustering of telecommunications user profiles for fraud detection and security enhancement in large corporate networks: a case study," vol. 9, no. 4, p. 1709, 2015. [13]S. Subudhi and S. J. P. C. S. Panigrahi, "Quarter-sphere support vector machine for fraud detection in mobile telecommunication networks," vol. 48, pp. 353-359, 2015. [14]V. S. Tseng, J.-C. Ying, C.-W. Huang, Y. Kao, and K.-T. Chen, "Fraudetector: A graph-mining-based framework for fraudulent phone call detection," in Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015, pp. 2157-2166. [15]H. Y. Min, J. H. Park, D. H. Lee, I. S. J. J. o. I. C. Kim, and Services, "Outlier detection method for mobile banking with user input pattern and E-finance transaction pattern," Journal of Internet Computing, vol. 15, no. 1, pp. 157-170, 2014. [16]J. Chen. (2021). Fraud. Available: https://www.investopedia.com/terms/f/fraud.asp [17]Kaggle. (2020). Synthetic Data from a Financial Payment System. Available: https://www.kaggle.com/ntnu-testimon/banksim1 [18]E. Lopez-Rojas, A. Elmir, and S. Axelsson, "PaySim: A financial mobile money simulator for fraud detection," in 28th European Modeling and Simulation Symposium, EMSS, Larnaca, 2016, pp. 249-255: Dime University of Genoa. [19]E. A. Lopez-Rojas and C. Barneaud, "Advantages of the PaySim Simulator for Improving Financial Fraud Controls," in Intelligent Computing-Proceedings of the Computing Conference, 2019, pp. 727-736: Springer. [20]C. J. E. j. o. o. r. Chatfield, "Exploratory data analysis," vol. 23, no. 1, pp. 5-13, 1986. [21]J. W. Tukey, Exploratory data analysis. Reading, Mass., 1977. [22]S. J. W. I. R. C. S. Morgenthaler, "Exploratory data analysis," vol. 1, no. 1, pp. 33-44, 2009. [23]P. Tamilarasi and R. U. Rani, "Diagnosis of Crime Rate against Women using k-fold Cross Validation through Machine Learning," in 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), 2020, pp. 1034-1038: IEEE. [24]I. H. Witten and E. J. A. S. R. Frank, "Data mining: practical machine learning tools and techniques with Java implementations," vol. 31, no. 1, pp. 76-77, 2002. [25]T. M. Mitchell, The discipline of machine learning. Carnegie Mellon University, School of Computer Science, Machine Learning …, 2006. [26]M. Svensén and C. M. Bishop, "Pattern recognition and machine learning," ed: Springer, 2007. [27]F. A. Wichmann, N. J. J. P. Hill, and psychophysics, "The psychometric function: II. Bootstrap-based confidence intervals and sampling," vol. 63, no. 8, pp. 1314-1329, 2001. [28]P. J. Bickel and D. A. J. T. a. o. s. Freedman, "Asymptotic normality and the bootstrap in stratified sampling," pp. 470-482, 1984. [29]L. J. A. i. r. Rokach, "Ensemble-based classifiers," vol. 33, no. 1, pp. 1-39, 2010. [30]R. E. Schapire, "A brief introduction to boosting," in Ijcai, 1999, vol. 99, pp. 1401-1406: Citeseer. [31]R. J. P. P. Wang, "AdaBoost for feature selection, classification and its relation with SVM, a review," vol. 25, pp. 800-807, 2012. [32]A. Singh and A. Jain, "Adaptive credit card fraud detection techniques based on feature selection method," in Advances in computer communication and computational sciences: Springer, 2019, pp. 167-178. [33]I. Benchaji, S. Douzi, and B. El Ouahidi, "Using genetic algorithm to improve classification of imbalanced datasets for credit card fraud detection," in International Conference on Advanced Information Technology, Services and Systems, 2018, pp. 220-229: Springer. [34]J. M. Hilbe, Logistic regression models. Chapman and hall/CRC, 2009. [35]S. Chen, Y.-J. J. Goo, and Z.-D. J. T. S. W. J. Shen, "A hybrid approach of stepwise regression, logistic regression, support vector machine, and decision tree for forecasting fraudulent financial statements," vol. 2014, 2014. [36]J. Luengo, A. Fernández, S. García, and F. J. S. C. Herrera, "Addressing data complexity for imbalanced data sets: analysis of SMOTE-based oversampling and evolutionary undersampling," vol. 15, no. 10, pp. 1909-1936, 2011. [37]N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. J. J. o. a. i. r. Kegelmeyer, "SMOTE: synthetic minority over-sampling technique," vol. 16, pp. 321-357, 2002. [38]E. Tung. (2019). SMOTE + ENN : 解決數據不平衡建模的採樣方法. Available: https://medium.com/%E6%95%B8%E5%AD%B8-%E4%BA%BA%E5%B7%A5%E6%99%BA%E6%85%A7%E8%88%87%E8%9F%92%E8%9B%87/smote-enn-%E8%A7%A3%E6%B1%BA%E6%95%B8%E6%93%9A%E4%B8%8D%E5%B9%B3%E8%A1%A1%E5%BB%BA%E6%A8%A1%E7%9A%84%E6%8E%A1%E6%A8%A3%E6%96%B9%E6%B3%95-cdb6324b711e [39]J. Y. Hesterman, L. Caucci, M. A. Kupinski, H. H. Barrett, and L. R. J. I. t. o. n. s. Furenlid, "Maximum-likelihood estimation with a contracting-grid search algorithm," vol. 57, no. 3, pp. 1077-1084, 2010. [40]P. Probst, M. N. Wright, A. L. J. W. I. R. D. M. Boulesteix, and K. Discovery, "Hyperparameters and tuning strategies for random forest," vol. 9, no. 3, p. e1301, 2019. [41]D. Paper and D. J. H.-o. S.-L. f. M. L. A. D. S. F. w. P. Paper, "Scikit-Learn Classifier Tuning from Simple Training Sets," pp. 137-163, 2020. [42]J. Bergstra and Y. J. J. o. m. l. r. Bengio, "Random search for hyper-parameter optimization," vol. 13, no. 2, 2012. [43]J. Huang, C. X. J. I. T. o. k. Ling, and D. Engineering, "Using AUC and accuracy in evaluating learning algorithms," vol. 17, no. 3, pp. 299-310, 2005. [44]J. M. Lobo, A. Jiménez‐Valverde, R. J. G. e. Real, and Biogeography, "AUC: a misleading measure of the performance of predictive distribution models," vol. 17, no. 2, pp. 145-151, 2008. [45]A. Fernández, S. García, M. Galar, R. C. Prati, B. Krawczyk, and F. Herrera, "Performance measures," in Learning from Imbalanced Data Sets: Springer, 2018, pp. 47-61. [46]J. H. Park, H. K. Kim, E. J. J. o. T. K. I. o. I. S. Kim, and Cryptology, "Effective normalization method for fraud detection using a decision tree," vol. 25, no. 1, pp. 133-146, 2015. [47]C. Liu, Y. Chan, S. H. Alam Kazmi, H. J. I. j. o. e. Fu, and finance, "Financial fraud detection model: Based on random forest," vol. 7, no. 7, 2015. [48]M. Vadoodparast, A. R. J. I. J. o. C. S. Hamdan, and I. Security, "Fraudulent electronic transaction detection using dynamic kda model," vol. 13, no. 3, p. 90, 2015. [49]V. Patil, U. K. J. I. J. o. S. R. i. C. S. Lilhore, Engineering, and I. Technology, "A survey on different data mining & machine learning methods for credit card fraud detection," vol. 3, no. 5, pp. 320-325, 2018.
|