|
林舜涓、陳慧玲、余梅香、張婷玥、及蘇家愷 (2018)。為何消費者喜歡購買油炸食品?-方法目的鏈理論之應用。健康促進與衛生教育學報, (49), 61-88。 行政院農業部農糧署。農業統計年報 (2023)。 Aaliya, B., Sunooj, K. V., Navaf, M., Akhila, P. P., Sudheesh, C., Mir, S. A., Sabu, S., Sasidharan, A., Hlaing, M.T. & George, J. (2021). Recent trends in bacterial decontamination of food products by hurdle technology: A synergistic approach using thermal and non-thermal processing techniques. Food Research International, 147, 110514. Abedi, E., Hashemi, S. M. B., & Ghiasi, F. (2023). Effective mitigation in the amount of acrylamide through enzymatic approaches. Food Research International, 113177. Adimas, M. A., Abera, B. D., Adimas, Z. T., Woldemariam, H. W., & Delele, M. A. (2024). Traditional food processing and Acrylamide formation: A review. Heliyon, 10, e30258. Al-Anbari, I. H., Al-Musawi, A. T., Al-Ani, M. T., & AlKaraquly, I. O. (2019). Effect of addition of various proportions of rosemary powder, citric acid and table salt in reducing the ratios of acrylamide in potato fries. Plant Archives, 19, 1223-1229. Alam, M. K. (2021). A comprehensive review of sweet potato (Ipomoea batatas Lam): Revisiting the associated health benefits. Trends in Food Science & Technology, 115, 512-529. Al-Asmar, A., Naviglio, D., Giosafatto, C. V. L., & Mariniello, L. (2018). Hydrocolloid-based coatings are effective at reducing acrylamide and oil content of French fries. Coatings, 8, 147. Balakrishna, A. K., Wazed, M. A., & Farid, M. (2020). A review on the effect of high pressure processing (HPP) on gelatinization and infusion of nutrients. Molecules, 25, 2369. Başaran, B., & Turk, H. (2021). The influence of consecutive use of different oil types and frying oil in French fries on the acrylamide level. Journal of Food Composition and Analysis, 104, 104177. Bedade, D. K., Sutar, Y. B., & Singhal, R. S. (2019). Chitosan coated calcium alginate beads for covalent immobilization of acrylamidase: Process parameters and removal of acrylamide from coffee. Food Chemistry, 275, 95-104. Bodjrenou, D. M., Li, X., Lu, X., Lei, S., Zheng, B., & Zeng, H. (2023). Resistant starch from sweet potatoes: Recent advancements and applications in the food sector. International Journal of Biological Macromolecules, 225, 13-26. Calderón-Oliver, M., & Ponce-Alquicira, E. (2021). Environmentally friendly techniques and their comparison in the extraction of natural antioxidants from green tea, rosemary, clove, and oregano. Molecules, 26, 1869. Cha, M. (2013). Enzymatic control of the acrylamide level in coffee. European Food Research and Technology, 236, 567-571. Chand, S., Mahajan, R. V., Prasad, J. P., Sahoo, D. K., Mihooliya, K. N., Dhar, M. S., & Sharma, G. (2020). A comprehensive review on microbial l‐asparaginase: Bioprocessing, characterization, and industrial applications. Biotechnology and Applied Biochemistry, 67, 619-647. Chang, Y. W., Zeng, X. Y., & Sung, W. C. (2020). Effect of chitooligosaccharide and different low molecular weight chitosans on the formation of acrylamide and 5-hydroxymethylfurfural and Maillard reaction products in glucose/fructose-asparagine model systems. Lebensmittel-Wissenschaft & Technologie, 119, 108879. Chi, H., Chen, M., Jiao, L., Lu, Z., Bie, X., Zhao, H., & Lu, F. (2021). Characterization of a novel L-asparaginase from Mycobacterium gordonae with acrylamide mitigation potential. Foods, 10, 2819. Ciesarová, Z., & Kukurová, K. (2024). Impact of L-asparaginase on acrylamide content in fried potato and bakery products. In Acrylamide in Food. Academic Press, 2nd ed., 473-491. Cuevas-González, P. F., González-Córdova, A. F., Vallejo-Cordoba, B., Aguilar-Toalá, J. E., Hall, F. G., Urbizo-Reyes, U. C., Liceaga A. M., Hernandez-Mendoza A., & García, H. S. (2022). Protective role of lactic acid bacteria and yeasts as dietary carcinogen-binding agents–a review. Critical Reviews in Food Science and Nutrition, 62, 160-180. de Oliveira, M. M., Tribst, A. A. L., Júnior, B. R. D. C. L., de Oliveira, R. A., & Cristianini, M. (2015). Effects of high pressure processing on cocoyam, Peruvian carrot, and sweet potato: Changes in microstructure, physical characteristics, starch, and drying rate. Innovative Food Science & Emerging Technologies, 31, 45-53. Dourado, C., Pinto, C. A., Cunha, S. C., Casal, S., & Saraiva, J. A. (2020). A novel strategy of acrylamide mitigation in fried potatoes using asparaginase and high pressure technology. Innovative Food Science & Emerging Technologies, 60, 102310. Duda-Chodak, A., Tarko, T., Sroka, P., & Satora, P. (2016). A review of the interactions between acrylamide, microorganisms and food components. Food & Function, 7, 1282-1295. Elbassiony, K. R. A. (2020). Reduction of acrylamide formation in potato chips by gamma irradiation and some pretreatments processing. Annals of Agricultural Science, Moshtohor, 58, 45-52. Fan, M., Xu, X., Lang, W., Wang, W., Wang, X., Xin, A., Zhou, F., Ding, Z., Ye, X., & Zhu, B. (2023). Toxicity, formation, contamination, determination and mitigation of acrylamide in thermally processed plant-based foods and herbal medicines: a review. Ecotoxicology and Environmental Safety, 260, 115059. Fernandes, F. A., & Rodrigues, S. (2007). Ultrasound as pre-treatment for drying of fruits: Dehydration of banana. Journal of Food Engineering, 82, 261-267. Gehlot, P., Kumar, M., & Pareek, N. (2022). Production and purification of glutaminase free L-asparaginase from Lysinibacillus fusiformis and its appraisal in acrylamide mitigation of starchy foods. Materials Today: Proceedings, 69, 64-73. Gertz, C., Klostermann, S., & Kochhar, S. P. (2003). Deep frying: the role of water from food being fried and acrylamide formation. Oléagineux, Corps Gras, Lipides, 10, 297-303. Gökmen, V., Palazoğlu, T. K., & Şenyuva, H. Z. (2006). Relation between the acrylamide formation and time–temperature history of surface and core regions of French fries. Journal of Food Engineering, 77, 972-976. Guangjie, Z. H. A. N., & Bo, S. L. (2007). Effect of ultra-high pressure on the quality and safety of fresh-cut Chinese Yam. In proceedings of the 2007 International Conference on Agriculture Engineering. Zhengzhou University Light Industry & Henan Institute of Science & Technology. Guo, K., Liu, T., Xu, A., Zhang, L., Bian, X., & Wei, C. (2019). Structural and functional properties of starches from root tubers of white, yellow, and purple sweet potatoes. Food Hydrocolloids, 89, 829-836. Huang, H. W., Hsu, C. P., & Wang, C. Y. (2020). Healthy expectations of high hydrostatic pressure treatment in food processing industry. Journal of Food and Drug Analysis, 28, 1-13. Huang, H. W., Wu, S. J., Lu, J. K., Shyu, Y. T., & Wang, C. Y. (2017). Current status and future trends of high-pressure processing in food industry. Food Control, 72, 1-8. Huang, L., Liu, Y., Sun, Y., Yan, Q., & Jiang, Z. (2014). Biochemical characterization of a novel L-Asparaginase with low glutaminase activity from Rhizomucor miehei and its application in food safety and leukemia treatment. Applied and Environmental Microbiology, 80, 1561-1569. Jia, R., Wan, X., Geng, X., Xue, D., Xie, Z., & Chen, C. (2021). Microbial L-asparaginase for application in acrylamide mitigation from food: Current research status and future perspectives. Microorganisms, 9, 1659. Jiao, L., Chi, H., Lu, Z., Zhang, C., Chia, S. R., Show, P. L., Tao, Y., & Lu, F. (2020). Characterization of a novel type I L-asparaginase from Acinetobacter soli and its ability to inhibit acrylamide formation in potato chips. Journal of Bioscience and Bioengineering, 129, 672-678. Jin, C., Wu, X., & Zhang, Y. (2013). Relationship between antioxidants and acrylamide formation: A review. Food Research International, 51, 611-620. Kalita, D., & Jayanty, S. S. (2013). Reduction of acrylamide formation by vanadium salt in potato French fries and chips. Food Chemistry, 138, 644-649. Keramat, J., LeBail, A., Prost, C., & Jafari, M. (2011). Acrylamide in baking products: a review article. Food and Bioprocess Technology, 4, 530-543. Keramat, J., LeBail, A., Prost, C., & Soltanizadeh, N. (2011). Acrylamide in foods: chemistry and analysis. A review. Food and Bioprocess Technology, 4, 340-363. Khorshidian, N., Yousefi, M., Shadnoush, M., Siadat, S. D., Mohammadi, M., & Mortazavian, A. M. (2020). Using probiotics for mitigation of acrylamide in food products: a mini review. Current Opinion in Food Science, 32, 67-75. Kuek, S. L., Tarmizi, A. H. A., Abd Razak, R. A., Jinap, S., Norliza, S., & Sanny, M. (2020). Contribution of lipid towards acrylamide formation during intermittent frying of French fries. Food Control, 118, 107430. Kumari, A., Bhattacharya, B., Agarwal, T., Paul, V., & Chakkaravarthi, S. (2022). Integrated approach towards acrylamide reduction in potato-based snacks: A critical review. Food Research International, 156, 111172. Leong, S. Y., Roberts, R., Hu, Z., Bremer, P., Silcock, P., Toepfl, S., & Oey, I. (2022). Texture and in vitro starch digestion kinetics of French fries produced from potatoes (Solanum tuberosum L.) pre-treated with pulsed electric fields. Applied Food Research, 2, 100194. Liu, H., Guo, X., Jiang, K., Shi, B., Liu, L., Hou, R., Chen, G., Farag, A. M., Yan, N., & Liu, L. (2024). Dietary polyphenols regulate appetite mechanism via gut-brain axis and gut homeostasis. Food Chemistry, 138739. Liu, H., Roasa, J., Mats, L., Zhu, H., & Shao, S. (2020). Effect of acid on glycoalkaloids and acrylamide in French fries. Food Additives & Contaminants: Part A, 37, 938-945. Liu, M., Li, X., Zhou, S., Wang, T. T., Zhou, S., Yang, K., Li, Y., Tian, J., & Wang, J. (2020). Dietary fiber isolated from sweet potato residues promotes a healthy gut microbiome profile. Food & Function, 11, 689-699. Liu, T., Dodds, E., Leong, S. Y., Eyres, G. T., Burritt, D. J., & Oey, I. (2017). Effect of pulsed electric fields on the structure and frying quality of “kumara” sweet potato tubers. Innovative Food Science & Emerging Technologies, 39, 197-208. Liyanage, D. W. K. (2019). Effects of nitrogen treatments and processing conditions on acrylamide formation in potato chips or French fries. University of Lethbridge (Canada). Liyanage, D. W., Yevtushenko, D. P., Konschuh, M., Bizimungu, B., & Lu, Z. X. (2021). Processing strategies to decrease acrylamide formation, reducing sugars and free asparagine content in potato chips from three commercial cultivars. Food Control, 119, 107452. Mekawi, E. M., Sharoba, A. M., & Ramadan, M. F. (2019). Reduction of acrylamide formation in potato chips during deep-frying in sunflower oil using pomegranate peel nanoparticles extract. Journal of Food Measurement and Characterization, 13, 3298-3306. Mestdagh, F., De Wilde, T., Delporte, K., Van Peteghem, C., & De Meulenaer, B. (2008). Impact of chemical pre-treatments on the acrylamide formation and sensorial quality of potato crisps. Food Chemistry, 106, 914-922. Mestdagh, F., De Wilde, T., Fraselle, S., Govaert, Y., Ooghe, W., Degroodt, J. M., Verhé, R., Peteghem, C. V., & De Meulenaer, B. (2008). Optimization of the blanching process to reduce acrylamide in fried potatoes. Lebensmittel-Wissenschaft & Technologie, 41, 1648-1654. Mikkelsen, K., Stojanovska, L., Tangalakis, K., Bosevski, M., & Apostolopoulos, V. (2016). Cognitive decline: A vitamin B perspective. Maturitas, 93, 108-113. Mohanraj, R. (2018). Sweet potato: Bioactive compounds and health benefits. Bioactive Molecules in Food. Reference Series in Phytochemistry; Mérillon, JM, Ramawat, KG, Eds, 1-16. Mrowicka, M., Mrowicki, J., Dragan, G., & Majsterek, I. (2023). The importance of thiamine (vitamin B1) in humans. Bioscience Reports, 43, BSR20230374. Nachi, I., Fhoula, I., Smida, I., Taher, I. B., Chouaibi, M., Jaunbergs, J., Bartkevics, V., & Hassouna, M. (2018). Assessment of lactic acid bacteria application for the reduction of acrylamide formation in bread. Lebensmittel-Wissenschaft & Technologie, 92, 435-441. Nateghi, L., Hosseini, E., & Fakheri, M. A. (2024). The effect of cold atmospheric plasma pretreatment on oil absorption, acrylamide content and sensory characteristics of deep-fried potato strips. Food Chemistry: X, 101194. Neela, S., & Fanta, S. W. (2019). Review on nutritional composition of orange‐fleshed sweet potato and its role in management of vitamin A deficiency. Food Science & Nutrition, 7, 1920-1945. Nematollahi, A., Meybodi, N. M., & Khaneghah, A. M. (2021). An overview of the combination of emerging technologies with conventional methods to reduce acrylamide in different food products: Perspectives and future challenges. Food Control, 127, 108144. Obomeghei, A. A., Olapade, A. A., & Akinoso, R. (2020). Evaluation of the chemical composition, functional and pasting properties of four varieties of Nigerian sweet potato [Ipomoea batatas L.(Lam.)] flour. African Journal of Food, Agriculture, Nutrition and Development, 20, 15764-15778. Oladejo, A. O., Ma, H., Qu, W., Zhou, C., Wu, B., Uzoejinwa, B. B., Onwude, D. I., & Yang, X. (2018). Application of pretreatment methods on agricultural products prior to frying: a review. Journal of the Science of Food and Agriculture, 98, 456-466. Orsák, M., Kotíková, Z., Podhorecká, K., Lachman, J., & Kasal, P. (2022). Acrylamide formation in red-, purple-and yellow-fleshed potatoes by frying and baking. Journal of Food Composition and Analysis, 110, 104529. Paciulli, M., Rinaldi, M., Rodolfi, M., Ganino, T., Morbarigazzi, M., & Chiavaro, E. (2019). Effects of high hydrostatic pressure on physico-chemical and structural properties of two pumpkin species. Food Chemistry, 274, 281-290. Pantalone, S., Tonucci, L., Cichelli, A., Cerretani, L., Gómez-Caravaca, A. M., & d'Alessandro, N. (2021). Acrylamide mitigation in processed potato derivatives by addition of natural phenols from olive chain by-products. Journal of Food Composition and Analysis, 95, 103682. Patel, P. G., Panseriya, H. Z., Vala, A. K., Dave, B. P., & Gosai, H. B. (2022). Exploring current scenario and developments in the field of microbial L-asparaginase production and applications: A review. Process Biochemistry, 121, 529-541. Paul, V., & Tiwary, B. N. (2020). An investigation on the acrylamide mitigation potential of L-asparaginase from Aspergillus terreus BV-C strain. Biocatalysis and Agricultural Biotechnology, 27, 101677. Pedreschi, F., Moyano, P., Kaack, K., & Granby, K. (2005). Color changes and acrylamide formation in fried potato slices. Food Research International, 38, 1-9. Petka, K., Tarko, T., & Duda-Chodak, A. (2020). Is acrylamide as harmful as we think? A new look at the impact of acrylamide on the viability of beneficial intestinal bacteria of the genus lactobacillus. Nutrients, 12, 1157. Plaza, L., Colina, C., de Ancos, B., Sánchez-Moreno, C., & Cano, M. P. (2012). Influence of ripening and astringency on carotenoid content of high-pressure treated persimmon fruit (Diospyros kaki L.). Food Chemistry, 130, 591-597. Prasad, K. N., Yang, B., Shi, J., Yu, C., Zhao, M., Xue, S., & Jiang, Y. (2010). Enhanced antioxidant and antityrosinase activities of longan fruit pericarp by ultra-high-pressure-assisted extraction. Journal of Pharmaceutical and Biomedical Analysis, 51, 471-477. Qin, Y., Naumovski, N., Ranadheera, C. S., & D'Cunha, N. M. (2022). Nutrition-related health outcomes of sweet potato (Ipomoea batatas) consumption: A systematic review. Food Bioscience, 50, 102208. Raghubeer, E. V., Phan, B. N., Onuoha, E., Diggins, S., Aguilar, V., Swanson, S., & Lee, A. (2020). The use of High-Pressure Processing (HPP) to improve the safety and quality of raw coconut (Cocos nucifera L) water. International Journal of Food Microbiology, 331, 108697. Rifai, L., & Saleh, F. A. (2020). A review on acrylamide in food: Occurrence, toxicity, and mitigation strategies. International Journal of Toxicology, 39, 93-102. Rinaldi, M., Dhenge, R., Rodolfi, M., Bertani, G., Bernini, V., Dall’Acqua, S., & Ganino, T. (2023). Understanding the Impact of High-Pressure Treatment on Physico-Chemical, Microstructural, and Microbiological Aspects of Pumpkin Cubes. Foods, 12, 1280. Rottmann, E., Hauke, K. F., Krings, U., & Berger, R. G. (2021). Enzymatic acrylamide mitigation in French fries–An industrial-scale case study. Food Control, 123, 107739. Santiago-Mora, P., Skinner, M., Hendricks, A., Rimkus, T., Meyer, B., Gratzek, J., Pu, S., Woodbury, L., Bond, L., & McDougal, O. (2024). Pulsed electric field effect on acrylamide reduction and quality attributes of continuous-style Lamoka potato chips. Heliyon, 10, e31790. Sánchez‐Moreno, C., Plaza, L., De Ancos, B., & Cano, M. P. (2006). Impact of high‐pressure and traditional thermal processing of tomato purée on carotenoids, vitamin C and antioxidant activity. Journal of the Science of Food and Agriculture, 86, 171-179. Shim, J. S., Kim, K. N., Lee, J. S., Yoon, M. O., & Lee, H. S. (2022). Dietary intake and major source foods of vitamin E among Koreans: findings of the Korea National Health and Nutrition Examination Survey 2016–2019. Nutrition Research and Practice, 16, 616. Sivasakthi, T., Amutha, S., Hemalatha, G., Murugan, M., Prabaharan, K., & Vellaikumar, S. (2019). Reduction of Acrylamide Formation in Fried Potato Chips. International Journal of Pure & Applied Bioscience, 7, 64-67. Smelt, J. P. P. M. (1998). Recent advances in the microbiology of high pressure processing. Trends in Food Science & Technology, 9, 152-158. Sulung, N. K., Aziss, N. A. S. M., Kutbi, N. F., Ahadaali, A. A., Zairi, N. A., Mahmod, I. I., Sajak, A. A. B., Sultana S., & Azlan, A. (2023). Validation of in vitro glycaemic index (eGI) and glycaemic load (eGL) based on selected baked products, beverages, and canned foods. Food Chemistry Advances, 3, 100502. Sun, Y., Kang, X., Chen, F., Liao, X., & Hu, X. (2019). Mechanisms of carrot texture alteration induced by pure effect of high pressure processing. Innovative Food Science & Emerging Technologies, 54, 260-269. Sun, Z., Qin, R., Li, D., Ji, K., Wang, T., Cui, Z., & Huang, Y. (2016). A novel bacterial type II L-asparaginase and evaluation of its enzymatic acrylamide reduction in French fries. International Journal of Biological Macromolecules, 92, 232-239. Shojaee‐Aliabadi, S., Nikoopour, H., Kobarfard, F., Parsapour, M., Moslehishad, M., Hassanabadi, H., Frias, J. M., Hashemi, M., & Dahaghin, E. (2013). Acrylamide reduction in potato chips by selection of potato variety grown in Iran and processing conditions. Journal of the Science of Food and Agriculture, 93, 2556-2561. Siddiqui, H., Sultan, Z., Yousuf, O., Malik, M., & Younis, K. (2023). A review of the health benefits, functional properties, and ultrasound-assisted dietary fiber extraction. Bioactive Carbohydrates and Dietary Fibre, 30, 100356. Silva, F. V. M. (2023). Pasteurization of food and beverages by high pressure processing (HPP) at room temperature: inactivation of Staphylococcus aureus, Escherichia coli, Listeria monocytogenes, Salmonella, and other microbial pathogens. Applied Sciences, 13, 1193. Tang, C., Han, J., Chen, D., Zong, S., Liu, J., Kan, J., Qian, C., & Jin, C. (2023). Recent advances on the biological activities of purple sweet potato anthocyanins. Food Bioscience, 102670. Tao, Y., Sun, D. W., Hogan, E., & Kelly, A. L. (2014). High-pressure processing of foods: An overview. Emerging Technologies for Food Processing, 3-24. Tarmizi, A. H. A., Ismail, R., & Kuntom, A. (2016). Effect of frying on the palm oil quality attributes-A review. Journal of Oil Palm Research, 28, 143-153. Teles, A. S. C., Chávez, D. W. H., Coelho, M. A. Z., Rosenthal, A., Gottschalk, L. M. F., & Tonon, R. V. (2021). Combination of enzyme-assisted extraction and high hydrostatic pressure for phenolic compounds recovery from grape pomace. Journal of Food Engineering, 288, 110128. Terefe, N. S., Buckow, R., & Versteeg, C. (2014). Quality-related enzymes in fruit and vegetable products: effects of novel food processing technologies, part 1: high-pressure processing. Critical Reviews in Food Science and Nutrition, 54, 24-63. Thapa, S., & Thapa, S. (2019). Scope of Value-addition in Potato. International Journal of Horticulture, Agriculture and Food Science, 3, 132-147. Torang, A., & Alemzadeh, I. (2016). Acrylamide reduction in potato crisps using: Asparaginase from Candida utilis, commercial asparaginase, salt immersion, and pH treatment. International Journal of Engineering, 29, 879-886. Tribst, A. A. L., Júnior, B. R. D. C. L., de Oliveira, M. M., & Cristianini, M. (2016). High pressure processing of cocoyam, Peruvian carrot and sweet potato: Effect on oxidative enzymes and impact in the tuber color. Innovative Food Science & Emerging Technologies, 34, 302-309. Ueno, S., Shigematsu, T., Watanabe, T., Nakajima, K., Murakami, M., Hayashi, M., & Fujii, T. (2010). Generation of free amino acids and γ-aminobutyric acid in water-soaked soybean by high-hydrostatic pressure processing. Journal of Agricultural and Food Chemistry, 58, 1208-1213. Wang, C. Y., Huang, H. W., Hsu, C. P., & Yang, B. B. (2016). Recent advances in food processing using high hydrostatic pressure technology. Critical Reviews in Food Science and Nutrition, 56, 527-540. Wu, Y. H., Huang, B. C., Lin, Y. H., & Wang, C. Y. (2024). Enzymatic impregnation by high hydrostatic pressure for preparing shape-retaining softened broccoli and carrot. Food Bioscience, 59, 103848. Xu, F., Oruna-Concha, M. J., & Elmore, J. S. (2016). The use of asparaginase to reduce acrylamide levels in cooked food. Food chemistry, 210, 163-171. Xu, X., & An, X. (2016). Study on acrylamide inhibitory mechanism in Maillard model reaction: Effect of p-coumaric acid. Food Research International, 84, 9-17. Yang, D., Wu, G., Li, P., Qi, X., Zhang, H., Wang, X., & Jin, Q. (2020). The effect of fatty acid composition on the oil absorption behavior and surface morphology of fried potato sticks via LF-NMR, MRI, and SEM. Food Chemistry: X, 7, 100095. Ye, S., Shah, B. R., Li, J., Liang, H., Zhan, F., Geng, F., & Li, B. (2022). A critical review on interplay between dietary fibers and gut microbiota. Trends in Food Science & Technology, 124, 237-249. Yuan, B., Danao, M. G. C., Lu, M., Weier, S. A., Stratton, J. E., & Weller, C. L. (2018). High pressure processing (HPP) of aronia berry puree: Pilot scale processing and a shelf-life study. Innovative Food Science & Emerging Technologies, 47, 241-248. Zhang, C., Lyu, X., Zhao, W., & Yang, R. (2022). Radio frequency as an innovative method to produce low‐fat French fries. Journal of the Science of Food and Agriculture, 102, 5181-5189. Zhang, C., Lyu, X., Zhao, W., Yan, W., Wang, M., Rei, N. K., & Yang, R. (2021). Effects of combined pulsed electric field and blanching pretreatment on the physiochemical properties of French fries. Innovative Food Science & Emerging Technologies, 67, 102561. Zuo, S., Zhang, T., Jiang, B., & Mu, W. (2015). Reduction of acrylamide level through blanching with treatment by an extremely thermostable L-asparaginase during French fries processing. Extremophiles, 19, 841-851.
|