|
[1] C. Liu, F. Tsow, Y. Zou, and N. Tao, “Particle pollution estimation based on image analysis,” PloS one, vol. 11, no. 2, pp. 1–4, Feb. 2016. [2] Z. Wang, W. Zheng, C. Song, Z. Zhang, J. Lian, S. Yue, and S. Ji, “Air quality measurement based on double-channel convolutional neural network ensemble learning,” IEEE Access,vol. 7, pp. 145 067–145 081, Oct. 2019. [3] J. L. Gallardo-Salazar and M. Pompa-García, “Detecting individual tree attributes and multispectral indices using unmanned aerial vehicles:Applications in a pine clonal orchard,”Remote Sensing, vol. 12, no. 24, pp. 1–22, Dec. 2020. [4] N. Jin, Y. Zeng, K. Yan, and Z. Ji, “Multivariate air quality forecasting with nested long short term memory neural network,” IEEE Transactions on Industrial Informatics, vol. 17,no. 12, pp. 8514–8522, Mar. 2021. [5] P. Chhikara, R. Tekchandani, N. Kumar, M. Guizani, and M. M. Hassan, “Federated learning and autonomous uavs for hazardous zone detection and aqi prediction in iot environment,” IEEE Internet of Things Journal, vol. 8, no. 20, pp. 15 456–15 467, Apr. 2021. [6] C. C. Goh, L. M. Kamarudin, A. Zakaria, H. Nishizaki, N. Ramli, X. Mao, S. M. M. S.Zakaria, E. Kanagaraj, A. S. A. Sukor, and M. Elham, “Real-time in-vehicle air quality monitoring system using machine learning prediction algorithm,” Sensors, vol. 21, no. 15,p. 4956, Jul. 2021. [7] T. H. Do, E. Tsiligianni, X. Qin, J. Hofman, V. P. L. Manna, W. Philips, and N. Deligiannis,“Graph-deep-learning-based inference of fine-grained air quality from mobile iot sensors,”IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8943–8955, Jun. 2020. [8] J. Hofman, T. H. Do, X. Qin, E. Rodrigo, M. E. Nikolaou, W. Philips, N. Deligiannis, and V. P. L. Manna, “Spatiotemporal air quality inference of low-cost sensor data; application on a cycling monitoring network,” in International Conference on Pattern Recognition, pp. 139–147. Springer, Feb. 2021. [9] A. Dairi, F. Harrou, S. Khadraoui, and Y. Sun, “Integrated multiple directed attention-based deep learning for improved air pollution forecasting,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1–15, Jun. 2021. [10] N. Seong, “Deep spatiotemporal attention network for fine particle matter 2.5 concentration prediction with causality analysis,” IEEE Access, vol. 9, pp. 73 230–73 239, May.2021. [11] W.C.Leong, R.O.Kelani, and Z.Ahmad, “Prediction of air pollution index (api) using support vector machine (svm),” Journal of Environmental Chemical Engineering, vol. 8, no. 3,p. 103208, Jun. 2020. [12] S. Yarragunta, M. A. Nabi, J. P, and R. S, “Prediction of air pollutants using supervised machine learning,” in 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 1633–1640. IEEE, May. 2021. [13] Y. Zhu, Y. Ma, B. Liu, X. Xu, S. Jin, and W. Gong, “Retrieving the vertical distribution of pm 2.5 mass concentration from lidar via a random forest model,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–9, Aug. 2021. [14] J. Gao, Z. Hu, K. Bian, X. Mao, and L. Song, “Aq360: Uav-aided air quality monitoring by 360-degree aerial panoramic images in urban areas,” IEEE Internet of Things Journal, vol. 8, no. 1, pp. 428–442, Jun. 2020. [15] Y. Liu, J. Nie, X. Li, S. H. Ahmed, W. Y. B. Lim, and C. Miao, “Federated learning in the sky: Aerial-ground air quality sensing framework with uav swarms,” IEEE Internet of Things Journal, vol. 8, no. 12, pp. 9827–9837, Sep. 2020. [16] M. Yao, D. Tao, J. Wang, R. Gao, and K. Sun, “Marvair: Meteorology augmented residualbased visual approach for crowdsourcing air quality inference,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–10, Jul. 2022. [17] S. Song, J. C. Lam, Y. Han, and V. O. Li, “Resnet-lstm for real-time pm 2.5 and pm 10 estimation using sequential smartphone images,” IEEE Access, vol. 8, pp. 220 069–220 082,Dec. 2020. [18] P.-Y. Kow, I.-W. Hsia, L.-C. Chang, and F.-J. Chang, “Real-time image-based air quality estimation by deep learning neural networks,” Journal of Environmental Management, vol.307, p. 114560, Apr. 2022. [19] C.-H. Hsieh, K.-Y. Chen, M.-Y. Jiang, J.-J. Liaw, and J. Shin, “Estimation of pm 2.5 concentration based on support vector regression with improved dark channel prior and high frequency information in images,” IEEE Access, vol. 10, pp. 48 486–48 498, May. 2022. [20] Z. Wang, Y. Yang, and S. Yue, “Air quality classification and measurement based on double output vision transformer,” IEEE Internet of Things Journal, vol. 8, no. 21, pp. 20 975–20 984, May. 2022. [21] Z. Wang, S. Yue, and C. Song, “Video-based air quality measurement with dual-channel 3-d convolutional network,” IEEE Internet of Things Journal, vol. 8, no. 18, pp. 14 372–14 384, Mar. 2021. [22] Z. Zhang, R. Jiang, S. Mei, S. Zhang, and Y. Zhang, “Rotation-invariant feature learning for object detection in vhr optical remote sensing images by double-net,” IEEE Access,vol. 8, pp. 20 818–20 827, Dec. 2019. [23] Y. Li, “Face detection algorithm based on double-channel cnn with occlusion perceptron,” Computational Intelligence and Neuroscience, vol. 2022, Jan. 2022. [24] B. Yang, J. Cao, R. Ni, and Y. Zhang, “Facial expression recognition using weighted mix ture deep neural network based on double-channel facial images,” IEEE access, vol. 6, pp.4630–4640, Dec. 2017. [25] K. Sun, W. Qiu, W. Yao, S. You, H. Yin, and Y. Liu, “Frequency injection based hvdc attack-defense control via squeeze-excitation double cnn,” IEEE Transactions on Power Systems, vol. 36, no. 6, pp. 5305–5316, May. 2021. [26] Y. Chen, J. Wang, X. Chen, A. K. Sangaiah, K. Yang, and Z. Cao, “Image super-resolution algorithm based on dual-channel convolutional neural networks,” Applied Sciences, vol. 9, no. 11, pp. 1–16, Jun. 2019. [27] J. Jiang, F. Liu, Y. Xu, and H. Huang, “Multi-spectral rgb-nir image classification using double-channel cnn,” IEEE Access, vol. 7, pp. 20 607–20 613, Jan. 2019. [28] M. Takruri, A. Abubakar, A.-H. Jallad, B. Altawil, P. R. Marpu, and A. Bermak, “Machine learning-based estimation of pm 2.5 concentration using ground surface dofp polarimeters,” IEEE Access, vol. 10, pp. 23 489–23 496, Feb. 2022. [29] T. Zhang, Z. Yang, Z. Xu, and J. Li, “Wheat yellow rust severity detection by efficient dfunet and uav multispectral imagery,” IEEE Sensors Journal, vol. 22, no. 9, pp. 9057–9068,Mar. 2022. [30] F. Hu, M. Zhou, P. Yan, Z. Liang, and M. Li, “A bayesian optimal convolutional neural network approach for classification of coal and gangue with multispectral imaging,” Optics and Lasers in Engineering, vol. 156, p. 107081, Sep. 2022. [31] M. Aamir, T. Ali, M. Irfan, A. Shaf, M. Z. Azam, A. Glowacz, F. Brumercik, W. Glowacz, S. Alqhtani, and S. Rahman, “Natural disasters intensity analysis and classification based on multispectral images using multi-layered deep convolutional neural network,” Sensors, vol. 21, no. 8, pp. 1–14, Apr. 2021. [32] A. Aeberli, K. Johansen, A. Robson, D. W. Lamb, and S. Phinn, “Detection of banana plants using multi-temporal multispectral uav imagery,” Remote Sensing, vol. 13, no. 11, pp. 1–24, May. 2021. [33] S. Illarionova, A. Trekin, V. Ignatiev, and I. Oseledets, “Neural-based hierarchical approach for detailed dominant forest species classification by multispectral satellite imagery,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 1810–1820, Dec. 2020. [34] M. F. Danilevicz, P. E. Bayer, F. Boussaid, and M. B. andDavid Edwards, “Maize yield prediction at an early developmental stage using multispectral images and genotype data for preliminary hybrid selection,” Remote Sensing, vol. 13, no. 19, pp. 1–21, Oct. 2021. [35] M. Kerkech, A. Hafiane, and R. Canals, “Vine disease detection in uav multispectral images using optimized image registration and deep learning segmentation approach,” Computers and Electronics in Agriculture, vol. 174, p. 105446, July. 2020. [36] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint arXiv:1312.4400, Mar.2013. [37] S. Qiu, “Global weighted average pooling bridges pixel-level localization and image-level classification,” arXiv preprint arXiv:1809.08264, Sep. 2018. [38] M. Lee, L. Lin, C.-Y. Chen, Y. Tsao, T.-H. Yao, M.-H. Fei, and S.-H. Fang, “Forecasting air quality in taiwan by using machine learning,” Scientific reports, vol. 10, no. 1, pp. 1–13, Mar. 2020. [39] J. Chen, L. Wu, J. Zhang, L. Zhang, D. Gong, Y. Zhao, Q. Chen, S. Huang, M. Yang, X. Yanga, S. Hu, Y. Wang, X. Hua, B. Zheng, K. Zhang, H. Wu, Z. Dong, Y. Xu, Y. Zhu, X. Chen, M. Zhanga, L. Yu, F. Cheng, and H. Yu, “Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography,” Scientific reports, vol. 10, no. 1, pp. 1–11, Nov. 2020. [40] F. Furukawa, L. A. Laneng, H. Ando, N. Yoshimura, M. Kaneko, and J. Morimoto, “Comparison of rgb and multispectral unmanned aerial vehicle for monitoring vegetation coverage changes on a landslide area,” Drones, vol. 5, no. 3, pp. 1–24, Sep. 2021. [41] R. Tamir, A. Lerner, C. Haspel, Z. Dubinsky, and D. Iluz, “The spectral and spatial distribution of light pollution in the waters of the northern gulf of aqaba (eilat),” Scientific reports, vol. 7, no. 1, pp. 1–10, Feb. 2017. [42] A. M. Stellacci, A. Castrignanò, M. Diacono, A. Troccoli, A. Ciccarese, E. Armenise, A. Gallo, P. D. Vita, A. Lonigro, M. A. Mastro, and P. Rubino, “Combined approach based on principal component analysis and canonical discriminant analysis for investigating hyperspectral plant response,” Italian Journal of Agronomy, vol. 7, no. 3, pp. e34–e34, Jul. 2012.
|