|
[1] F. Feldmann, M. Bivour, J. C. Goldschmidt, S. W. Glunz, “Approaches for the highest silicon-based solar cell efficiencies,” Applied Physics Reviews, vol. 7, 2020, p.021305. [2] P. Roy, N. K. Sinha, A. Khare, “Progress in efficiency and stability of hybrid perovskite photovoltaic devices in high reactive environments,” Hybrid Perovskite Composite Materials, vol. 11, 2021, p. 239. [3] L. Yan, C. Han, B. Shi, Y. Zhao, X. Zhang, “Interconnecting layers of different crystalline silicon bottom cells in monolithic perovskite/silicon tandem solar cells,” Superlattices and Microstructures, vol. 151, 2021, p. 106811. [4] M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, E. Maruyama, “24.7% Record efficiency HIT solar cell on thin silicon wafer,” IEEE Journal of Photovoltaics, vol. 4, 2014, p. 96. [5] S. S. Hegedus, F. Kampas, J. Xi, “Current transport in amorphous silicon n/p junctions and their application as tunnel junctions in tandem solar cells,” Applied Physics Letters, vol. 67, 1995, p. 813. [6] F. Sahli, B. A. Kamino, J. Werner, M. Brauninger, B. Paviet-Salomon, L. Barraud, R. Monnard, J. P. Seif, A. Tomasi, Q. Jeangros, A. Hessler-Wyser, S. D. Wolf, M. Despeisse, S. Nicolay, B. Niesen, C. Ballif, “Improved optics in monolithic perovskite/silicon tandem solar cells with a nanocrystalline silicon recombination junction,” Advance Energy Materials, vol. 8, 2018, p. 1701609. [7] B. Chen, Z. J. Yu, S. Manzoor, X. Dai, Z. C. Holman, J. Huang, “Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells,” Joule, vol. 4, 2020, p. 850. [8] S. Zhua, X. Yaoa, Q. Rena, C. Zhenga, S. Lia, Y. Tonga, B. Shia, S. Guoa, L. Fana, H. Rena, C. Weia, B. Lia, Y. Dinga, Q. Huanga, Y. Lia, Y. Zhaoa, X. Zhanga, “Transparent electrode for monolithic perovskite/silicon-heterojunction two terminal tandem solar cells,” Nano Energy, vol. 45, 2018, p. 280. [9] F. E. Akkad, A. Punnoose, G. Prabu, “Properties of ITO films prepared by rf magnetron sputtering,” Applied Physics, vol. 71, 2000, p. 157. [10] R. B. H. Tahar, T. Ban, Y. Ohya, Y. Takahashi, “Tin doped indium oxide thin films electrical properties,” Journal of Applied Physics, vol. 11, 1998, p. 501. [11] T. C. Lin, S. C. Chang, C. F. Chiu, “Annealing effect of ITO and ITO/Cu transparent conductive films in low pressure hydrogen atmosphere,” Materials Science and Engineering, vol. 129, 2006, p. 39. [12] J. Y. Lee, J. W. Yang, J. H. Chae, J. H. Park, J. I. Choi, H. J. Park, D. Kim, “Dependence of intermediated noble metals on the optical and electrical properties of ITO/metal/ITO multilayers,” Optics Communications, vol. 282, 2009, p. 2362. [13] X. Ding, J. Yan, T. Li, L. Zhang, “Transparent conductive ITO/Cu/ITO films prepared on flexible substrates at room temperature,” Applied Surface Science, vol. 258, 2012, p. 3082. [14] X. Ding, J. Yan, T. Li, L. Zhang, “Effect of SiO2 buffer layer thickness on the properties of ITO/Cu/ITO multilayer films deposited on polyethylene terephthalate substrates,” Vacuum, vol. 86, 2011, p. 443. [15] M. Kim, Y. Chae, H. Park, H. Kim, D. Cha, “Characteristics on ITO/Cu/ITO films deposited by using DC magnetron sputter technology,” New Physics : Sae Mulli, vol. 64, 2014, p. 1077. [16] D. Kim, “Properties of ITO/Cu/ITO multilayer films for application as low resistance transparent electrodes,” Transactions on Electrical and Electronic Materials, vol. 10, 2009, p. 680. [17] D. Chakraborty, S. Kaleemulla, N. M. Rao, K. Subbaravamma, G. V. Rao, “Structural and optical properties of ITO and Cu doped ITO thin films,” AIP Conference Proceedings, vol. 1942, 2018, p. 120002. [18] Y. S. Kim, J. H. Park, D. H. Choi, H. S. Jang, J. H. Lee, H. J. Park, J. I. Choi, D. H. Ju, J. Y. Lee, D. Kim, “ITO/Au/ITO multilayer thin films for transparent conducting electrode applications,” Applied Surface Science, vol. 254, 2007, p. 1524. [19] M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, J. Stollenwerk, “Dependence of film composition and thicknesses on optical and electrical properties of ITO–metal–ITO multilayers,” Thin Solid Films, vol. 326, 1998, p. 67. [20] I. Manouchehri, D. Mehrparvar, R. Moradian, K. Gholami, T. Osati, “Investigation of structural and optical properties of copper doped NiO thin films deposited by RF magnetron reactive sputtering,” Optik, vol. 127, 2016, p. 8124. [21] P. Gao, Z. Yang, J. He, J. Yu, P. Liu, J. Zhu, Z. Ge, J. Ye, “Dopant-free and carrier-selective heterocontacts for silicon solar cells recent advances and perspectives,” Advanced Science, vol. 5, 2018, p. 1700547. [22] J. Meyer, S. Hamwi, M. Kroger, W. Kowalsky, T. Riedl, A. Kahn, “Transition metal oxides for organic electronics energetics device physics and applications,” Advanced Materials, vol. 24, 2012, p. 5408. [23] J. Bullock, D. Yan, A. Cuevas, Y. Wan, C. Samundsett, “N-type and P-type silicon solar cells with molybdenum oxide hole contacts,” Energy Procedia, vol. 77, 2015, p. 446. [24] C. Battaglia, X. Yin, M. Zheng, C. Ballif, A. Javey, “Silicon heterojunction solar cell with passivated hole selective MoOx contact,” Applied Physics Letters, vol. 104, 2014, p. 113902. [25] S. Chowdhury, M. Q. Khokhar, S. Lee, Y. Kim, J. Park, D. P. Pham, J. Yi, “P-type heterojunction bifacial solar cell with rear side carrier selective contact,” Inorganic Chemistry Communications, vol. 129, 2021, p. 108658. [26] C. Battaglial, X. Yin, M. Zheng, C. Ballif, A. Javey, “Hole selective MoOx contact for silicon heterojunction solar cells,” IEEE 40th Photovoltaic Specialist Conference, 2014. [28] K. Mallem, S. Kim, S. Chowdary, S. Kim, J. Park, J. Kim, S. Dutta, M. Ju, Y. Kim, Y. H. Cho, E. C. Cho, J. Yi, “Influence of molybdenum oxide thickness electronic structure, and work function on the performance of hole selective silicon heterojunction solar cells,” IEEE 26th International Workshop on Active-Matrix Flatpanel Displays and Devices, 2019. [29] S. Cao, J. Li, Y. Lin, T. Pan, G. Du, J. Zhang, L. Yang, X. Chen, L. Lu, N. Min, M. Yin, D. Li, “Interfacial behavior and stability analysis of P-Type crystalline silicon solar cells based on hole-selective MoOx/Metal contacts,” RRL Solar, vol. 3, 2019, p. 1900274. [30] L. Cattin, Y. Lare, M. Makha, M. Fleury, F. Chandezon, T. Abachi, M. Morsli, K. Napo, M. Addou, J. C. Bernede, “Effect of the ag deposition rate on the properties of conductive transparent MoO3/Ag/MoO3 multilayers,” Solar Energy Materials, vol. 117, 2017, p. 103.
|