Aeimbhu, A. (2018). Effect of calcination temperature on morphology, wettability and anatase/rutile phase ratio of titanium dioxide nanotube arrays. Materials Today: Proceedings, 5(7, Part 1), 14950-14954.
Akizuki, M., & Oshima, Y. (2013). Effects of water density on acid-catalytic properties of TiO2 and WO3/TiO2 in supercritical water. The Journal of Supercritical Fluids, 84, 36-42.
Aljuboury, D. A., Palaniandy, P., Abdul Aziz, H. B., Feroz, S., & Abu Amr, S. S. (2016). Evaluating photo-degradation of COD and TOC in petroleum refinery wastewater by using TiO2/ZnO photo-catalyst. Water Science & Technology , 74(6), 1312-1325.
Alonso, E., Montequi, I., & Cocero, M. J. (2009). Effect of synthesis conditions on photocatalytic activity of TiO2 powders synthesized in supercritical CO2. The Journal of Supercritical Fluids, 49(2), 233-238.
Astinchap, B., & Laelabadi, K. G. (2019). Effects of substrate temperature and precursor amount on optical properties and microstructure of CVD deposited amorphous TiO2 thin films. Journal of Physics and Chemistry of Solids, 129, 217-226.
Atout, H., Álvarez, M. G., Chebli, D., Bouguettoucha, A., Tichit, D., Llorca, J., & Medina, F. (2017). Enhanced photocatalytic degradation of methylene blue: Preparation of TiO2/reduced graphene oxide nanocomposites by direct sol-gel and hydrothermal methods. Materials Research Bulletin, 95, 578-587.
Camarillo, R., Tostón, S., Martínez, F., Jiménez, C., & Rincón, J. (2017). Enhancing the photocatalytic reduction of CO2 through engineering of catalysts with high pressure technology: Pd/TiO2 photocatalysts. The Journal of Supercritical Fluids, 123, 18-27.
Cao, J., Chow, J. C., Lee, F. S., Watson, J. G. J. A., & Research, A. Q. (2013). Evolution of PM2.5 measurements and standards in the US and future perspectives for China. 13(4), 1197-1211.
Cao, L., Huang, A., Spiess, F.-J., & Suib, S. L. (1999). Gas-Phase Oxidation of 1-Butene Using Nanoscale TiO2 Photocatalysts. Journal of Catalysis, 188(1), 48-57.
Carp, O., Huisman, C. L., & Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32(1), 33-177.
Cassaignon, S., Koelsch, M., & Jolivet, J.-P. (2007). From TiCl3 to TiO2 nanoparticles (anatase, brookite and rutile): Thermohydrolysis and oxidation in aqueous medium. Journal of Physics and Chemistry of Solids, 68(5), 695-700.
Cedillo-González, E. I., Riccò, R., Costacurta, S., Siligardi, C., & Falcaro, P. (2018). Below room temperature: How the photocatalytic activity of dense and mesoporous TiO2 coatings is affected. Applied Surface Science, 435, 769-775.
Chen, D., Cheng, Y., Zhou, N., Chen, P., Wang, Y., Li, K., Cheng,P., Ruan, R. (2020). Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. Journal of Cleaner Production, 268, 121725.
Chen, Y.-F., Lee, C.-Y., Yeng, M.-Y., & Chiu, H.-T. (2003). The effect of calcination temperature on the crystallinity of TiO2 nanopowders. Journal of Crystal Growth, 247(3), 363-370.
Cheng, H.-Y., Chang, K.-C., Lin, K.-L., & Ma, C.-M. (2018). Study on isopropanol degradation by UV/TiO2 nanotube. Paper presented at the AIP Conference Proceedings.
Cocero, M. J., Martín, Á., Mattea, F., & Varona, S. (2009). Encapsulation and co-precipitation processes with supercritical fluids: Fundamentals and applications. The Journal of Supercritical Fluids, 47(3), 546-555.
Diebold, U. (2003). The surface science of titanium dioxide. Surface Science Reports, 48(5), 53-229.
Dobrovolskaia, M. A., & McNeil, S. E. (2007). Immunological properties of engineered nanomaterials. Nature Nanotechnology, 2(8), 469-478.
Fang, Y.-f., Huang, Y.-p., Liu, D.-f., Huang, Y., Guo, W., & David, J. (2007). Photocatalytic degradation of the dye sulforhodamine-B: A comparative study of different light sources. Journal of Environmental Sciences, 19(1), 97-102.
Fujishima, A., & Honda, K. (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238(5358), 37-38.
G.L.Nord. (1992). Imaging transformation-induced microstructure. 27, 455-508.
Gao, Y., Wang, L., Zhou, A., Li, Z., Chen, J., Bala, H., Cao, X. (2015). Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity. Materials Letters, 150, 62-64.
Grätzel, M. (2001). Photoelectrochemical cells. Nature, 414(6861), 338-344.
Guettaï, N., & Ait Amar, H. (2005). Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part I: Parametric study. Desalination, 185(1), 427-437.
Hamdy, M. S. (2017). Effect of humidity on the photocatalytic degradation of gaseous hydrocarbons mixture. Materials Chemistry and Physics, 197, 1-9.
Hirakawa, T., Whitesell, J., & Fox, M. (2004). Effect of Temperature and Pressure in the Photocatalytic Oxidation of n-Octanol on Partially Desilanized Hydrophobic TiO2 Suspended in Aerated Supercritical CO2. The Journal of Physical Chemistry B , 108.
Huang, M., Xu, C., Wu, Z., Huang, Y., Lin, J., & Wu, J. (2008). Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite. Dyes and Pigments, 77(2), 327-334.
huo, Y., jin, Y., zhu, J., & li, H. (2009). Highly active TiO2−x−yNxFy visible photocatalyst prepared under supercritical conditions in NH4F/EtOH fluid. Applied Catalysis B: Environmental, 89(3), 543-550.
Jiao, J., Xu, Q., & Li, L. (2007). Porous TiO2/SiO2 composite prepared using PEG as template direction reagent with assistance of supercritical CO2. Journal of Colloid and Interface Science, 316(2), 596-603.
Kalani, M., & Yunus, R. (2011). Application of supercritical antisolvent method in drug encapsulation: a review. International Journal of Nanomedicine , 6, 1429-1442.
Kawasaki, S.-i., Xiuyi, Y., Sue, K., Hakuta, Y., Suzuki, A., & Arai, K. (2009). Continuous supercritical hydrothermal synthesis of controlled size and highly crystalline anatase TiO2 nanoparticles. The Journal of Supercritical Fluids, 50(3), 276-282.
Khairy, M., & Zakaria, W. (2014). Effect of metal-doping of TiO2 nanoparticles on their photocatalytic activities toward removal of organic dyes. Egyptian Journal of Petroleum, 23(4), 419-426.
Kim, H.-J., Yoon, Y.-S., Yang, K.-H., & Kwon, S.-J. (2019). Durability and purification performance of concrete impregnated with silicate and sprayed with photocatalytic TiO2. Construction and Building Materials, 199, 106-114.
Li, F., Sun, S., Jiang, Y., Xia, M., Sun, M., & Xue, B. (2008). Photodegradation of an azo dye using immobilized nanoparticles of TiO2 supported by natural porous mineral. Journal of Hazardous Materials, 152(3), 1037-1044.
Li, H., Li, G., Zhu, J., & Wan, Y. (2005). Preparation of an active SO2/TiO2 photocatalyst for phenol degradation under supercritical conditions. Journal of Molecular Catalysis A: Chemical, 226(1), 93-100.
Li, J.-J., Weng, B., Cai, S.-C., Chen, J., Jia, H.-P., & Xu, Y.-J. (2018). Efficient promotion of charge transfer and separation in hydrogenated TiO2/WO3 with rich surface-oxygen-vacancies for photodecomposition of gaseous toluene. Journal of Hazardous Materials, 342, 661-669.
Li, J., Guo, J., Deng, J., & Huang, Y. (2017). Enhanced electrochemical performance of lithium-sulfur batteries by using mesoporous TiO2 spheres as host materials for sulfur impregnation. Materials Letters, 189, 188-191.
Liang, S., Shu, Y., Li, K., Ji, J., Huang, H., Deng, J., Zhang, Y. (2020). Mechanistic insights into toluene degradation under VUV irradiation coupled with photocatalytic oxidation. Journal of Hazardous Materials, 399, 122967.
Linsebigler, A. L., Lu, G., & Yates, J. T. (1995). Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 95(3), 735-758.
Lu, D., Yang, M., Fang, P., Li, C., & Jiang, L. (2017). Enhanced photocatalytic degradation of aqueous phenol and Cr(VI) over visible-light-driven TbxOy loaded TiO2-oriented nanosheets. Applied Surface Science, 399, 167-184.
Madriz, L., Tatá, J., Carvajal, D., Núñez, O., Scharifker, B. R., Mostany, J., Cabrerizo, Franco, M., Borrás, C. ,Vargas ,R.(2020). Photocatalysis and photoelectrochemical glucose oxidation on Bi2WO6: Conditions for the concomitant H2 production. Renewable Energy, 152, 974-983.
Maira, A. J., Yeung, K. L., Lee, C. Y., Yue, P. L., & Chan, C. K. (2000). Size Effects in Gas-Phase Photo-oxidation of Trichloroethylene Using Nanometer-Sized TiO2 Catalysts. Journal of Catalysis, 192(1), 185-196.
Maira, A. J., Yeung, K. L., Soria, J., Coronado, J. M., Belver, C., Lee, C. Y., & Augugliaro, V. (2001). Gas-phase photo-oxidation of toluene using nanometer-size TiO2 catalysts. Applied Catalysis B: Environmental, 29(4), 327-336.
Maksod, I. H. A. E., Al-Shehri, A., Bawaked, S., Mokhtar, M., & Narasimharao, K. (2017). Structural and photocatalytic properties of precious metals modified TiO2-BEA zeolite composites. Molecular Catalysis, 441, 140-149.
Mamaghani, A. H., Haghighat, F., & Lee, C.-S. (2017). Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art. Applied Catalysis B: Environmental, 203, 247-269.
Mamaghani, A. H., Haghighat, F., & Lee, C.-S. (2018). Photocatalytic degradation of VOCs on various commercial titanium dioxides: Impact of operating parameters on removal efficiency and by-products generation. Building and Environment, 138, 275-282.
Mehrizadeh, H., Niaei, A., Tseng, H.-H., Salari, D., & Khataee, A. (2017). Synthesis of ZnFe2O4 nanoparticles for photocatalytic removal of toluene from gas phase in the annular reactor. Journal of Photochemistry and Photobiology A: Chemistry, 332, 188-195.
Mills, A., Le Hunte, S. J. J. o. p., & Chemistry, p. A. (1997). An overview of semiconductor photocatalysis. 108(1), 1-35.
Mills, A., Wang, J., & Ollis, D. F. (2006). Dependence of the kinetics of liquid-phase photocatalyzed reactions on oxygen concentration and light intensity. Journal of Catalysis, 243(1), 1-6.
Mo, J., Zhang, Y., Xu, Q., Zhu, Y., Lamson, J. J., & Zhao, R. (2009). Determination and risk assessment of by-products resulting from photocatalytic oxidation of toluene. Applied Catalysis B: Environmental, 89(3), 570-576.
Murcia, J. J., Hidalgo, M. C., Navío, J. A., Vaiano, V., Sannino, D., & Ciambelli, P. (2013). Cyclohexane photocatalytic oxidation on Pt/TiO2 catalysts. Catalysis Today, 209, 164-169.
Muruganandham, M., & Swaminathan, M. (2006). TiO2–UV photocatalytic oxidation of Reactive Yellow 14: Effect of operational parameters. Journal of Hazardous Materials, 135(1), 78-86.
Mutuma, B. K., Shao, G. N., Kim, W. D., & Kim, H. T. (2015). Sol–gel synthesis of mesoporous anatase–brookite and anatase–brookite–rutile TiO2 nanoparticles and their photocatalytic properties. Journal of Colloid and Interface Science, 442, 1-7.
Nakata, K., & Fujishima, A. (2012). TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13(3), 169-189.
Park, E. J., Seo, H. O., & Kim, Y. D. (2017). Influence of humidity on the removal of volatile organic compounds using solid surfaces. Catalysis Today, 295, 3-13.
Piccinno, F., Fadri Gottschalk, Seeger, S., & Nowack, B. (2012). Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world.
Qie, Z., Zhang, Z., Sun, F., Wang, L., Pi, X., Gao, J., & Zhao, G. (2019). Effect of pore hierarchy and pore size on the combined adsorption of SO2 and toluene in activated coke. Fuel, 257, 116090.
Quirk, R. A., France, R. M., Shakesheff, K. M., & Howdle, S. M. (2004). Supercritical fluid technologies and tissue engineering scaffolds. Current Opinion in Solid State and Materials Science, 8(3), 313-321.
Rosseler, O., Ulhaq-Bouillet, C., Bonnefont, A., Pronkin, S., Savinova, E., Louvet, A., Keller, N. (2015). Structural and electronic effects in bimetallic PdPt nanoparticles on TiO2 for improved photocatalytic oxidation of CO in the presence of humidity. Applied Catalysis B: Environmental, 166-167, 381-392.
Saien, J., & Shahrezaei, F. (2012). Organic Pollutants Removal from Petroleum Refinery Wastewater with Nanotitania Photocatalyst and UV Light Emission. International Journal of Photoenergy, 2012.
San, N., Hatipoǧlu, A., Koçtürk, G., & Çınar, Z. (2001). Prediction of primary intermediates and the photodegradation kinetics of 3-aminophenol in aqueous TiO2 suspensions. Journal of Photochemistry and Photobiology A: Chemistry, 139(2), 225-232.
Shu, Y., Ji, J., Xu, Y., Deng, J., Huang, H., He, M. ,Ye, X. (2018). Promotional role of Mn doping on catalytic oxidation of VOCs over mesoporous TiO2 under vacuum ultraviolet (VUV) irradiation. Applied Catalysis B: Environmental, 220, 78-87.
Singh, J., Khan, S. A., Shah, J., Kotnala, R. K., & Mohapatra, S. (2017). Nanostructured TiO2 thin films prepared by RF magnetron sputtering for photocatalytic applications. Applied Surface Science, 422, 953-961.
Soares, E., Lansarin, M., & Moro, C. (2007). A Study of Process Variables for the Photocatalytic Degradation of Rhodamine B. Brazilian Journal of Chemical Engineering , 24.
Sun, J., Wang, Q., Wang, W., & Wang, K. (2018). Study on the synergism of steam reforming and photocatalysis for the degradation of Toluene as a tar model compound under microwave-metal discharges. Energy, 155, 815-823.
Sun, L., Li, G., Wan, S., & An, T. (2010). Mechanistic study and mutagenicity assessment of intermediates in photocatalytic degradation of gaseous toluene. Chemosphere, 78(3), 313-318.
Takahashi, M., & Shiroishi, M. (2002). Thermodynamic Bethe ansatz equations of one-dimensional Hubbard model and high-temperature expansion. Physical Review B , 65.
Takeda, S., Suzuki, S., Odaka, H., & Hosono, H. (2001). Photocatalytic TiO2 thin film deposited onto glass by DC magnetron sputtering. Thin Solid Films, 392(2), 338-344.
Toghill, K. E., Méndez, M. A., & Voyame, P. (2014). Electrochemistry in supercritical fluids: A mini review. Electrochemistry Communications, 44, 27-30.
Wang, H., & You, C. (2016). Photocatalytic removal of low concentration SO2 by titanium dioxide. Chemical Engineering Journal, 292, 199-206.
Wang, M., Chen, C., Zhao, B., Zeng, Q., & He, D. (2013). Solvothermal synthesis of nanostructured TiO2 photocatalyst in supercritical CO2 fluids. Materials Letters, 109, 104-107.
Wei, Z. S., He, Y. M., Huang, Z. S., Xiao, X. L., Li, B. L., Ming, S., & Cheng, X. L. (2019). Photocatalytic membrane combined with biodegradation for toluene oxidation. Ecotoxicology and Environmental Safety, 184, 109618.
Wintterlin, J., Völkening, S., Janssens, T. V. W., Zambelli, T., & Ertl, G. (1997). Atomic and Macroscopic Reaction Rates of a Surface-Catalyzed Reaction. Science, 278(5345), 1931.
Witkowski, A., Majkut, M., & Rulik, S. (2014). Analysis of pipeline transportation systems for carbon dioxide sequestration. Silesian University of Technology, Institute of Power Engineering and Turbomachinery.
Zhang, W., Zhang, D., & Liang, Y. (2019). Nanotechnology in remediation of water contaminated by poly- and perfluoroalkyl substances: A review. Environmental Pollution, 247, 266-276.
Zhang, Y., & Erkey, C. (2006). Preparation of supported metallic nanoparticles using supercritical fluids: A review. The Journal of Supercritical Fluids, 38(2), 252-267.
Zhao, W., Wang, W., Feng, X., He, L., Cao, Q., Luan, C., & Ma, J. (2017). Preparation and characterization of transparent indium- doped TiO2 films deposited by MOCVD. Ceramics International, 43(11), 8391-8395.
Zhong, L., Brancho, J. J., Batterman, S., Bartlett, B. M., & Godwin, C. (2017). Experimental and modeling study of visible light responsive photocatalytic oxidation (PCO) materials for toluene degradation. Applied Catalysis B: Environmental, 216, 122-132.
任杰, 張鵬, 藤新榮, & 任天斌. (2009). 超臨界抗溶劑技術在聚乳酸基藥物微粒製備中的應用. 同濟大學 材料科學與工程學院奈米與生物高分子材料研究所.
吳弦聰. (2006). 藉助超臨界流體之超細微粒的製備與分散研究. 國立臺灣科技大學 化學工程所 博士論文.吳俊毅. (2012). 含鎳廢觸媒資源化回收有價金屬之研究. 國立成功大學 資源工程研究所 博士論文.吳建儀. (2002). 超臨界二氧化碳至備奈米二氧化鈦光觸媒之研究. 國立成功大學化學研究所 碩士論文.李歡歡, 陈潤锋, 馬琮, 張勝蘭, 安綜福, & 物理化學學報, 黄. J. (2011). 陽極氧化法製備二氧化钛纳米管及其在太陽能電池中的應用. 27(05), 1017-1025.
沈俊宏. (2010). 製備可見光催化支付和光觸媒TiO2降解AO7及RhB染料之研究. 國立雲林科技大學環境與安全衛生工程研究所 碩士論文.林振益. (2015). 以S 和Zn共摻雜 TiO2 光觸媒在可見光下處理室內空氣污染物甲苯之研究.成功大學環境工程學系學位論文, 1-185.
洪楨琳. (2001). 溫度與濕度對光催化分解苯蒸氣之影響研究. 國立中山大學環境工程研究所, 碩士論文.張敬暢, 李青, & 曹維良. (2005). 超臨界流體乾燥法製備TiO2/Fe2O3和TiO2/Fe2O3/SiO2複合奈米粒子及光催化性能.
張敬暢, 高玲玲, & 曹維良. (1999). 奈米TiO2-SiO2複合光催化劑的超臨界流體乾燥法製備及催化性能研究.
張懷瑋. (2012). 二氧化鈦結構探討與其雙晶面分析. 國立中山大學材料與光電科學學系 碩士論文.莊志宇. (2016). 多層次孔徑分布之二氧化鈦多孔體的製備與應用. 國立中興大學材料科學與工程學系 碩士論文.陳美吟. (2012). 超臨界流體沉積法製備鉑基觸媒層. 中原大學 化學系 碩士學位論文.陳美麗. (2007). 利用超臨界流體製備之光觸媒二氧化鈦降解含氯溶劑. 朝陽科技大學 環境工程與管理系碩士班.楊顯整. (2009). 超臨界綠色技術之概述. 綠基會專題報導.
廖盛焜, 李勝騰, & 張原需. (2012). 超臨界流體染色技術. 科學期刊 470期.
廖傳華, 柴本銀, 朱躍釗, 史勇春, & 黃振仁. (2006). 超臨界流體乾燥技術在奈米粉體製備中的應用.
劉守新, & 劉鴻. (2006). 光催化及光电催化基礎與應用: 化學工業出版社材料科學與工程出版中心.
樓仲軒. (2007). 自製備二氧化鈦(TiO2)及金屬離子協同降解染料RhB之研究. 國立雲林科技大學環境與安全衛生工程系 碩士論文.蔡沛珺. (2013). 錳改質二氧化鈦於真空紫外光下降解甲苯之研究. 國立台灣科技大學 化學工程研究所.
鄭玟玲. (2007). 金、鉑擔載於二氧化鈦上進行光催化甲醇重組產氣之研究. 國立中央大學 碩士論文.
顏佑庭. (2017). 以改質二氧化鈦光電催化處理室內甲苯之研究. 臺灣大學環境工程學研究所學位論文, 1-108.