[1] Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972,238,37.
[2] Li, Y., Piret, F., Léonard, T., & Su, B. L. (2010). Rutile TiO2 inverse opal with photonic bandgap in the UV–visible range. Journal of colloid and interface science, 348(1), 43-48.
[3] Lu, Y., Yin, W. J., Peng, K. L., Wang, K., Hu, Q., Selloni, A., ... & Sui, M. L. (2018). Self-hydrogenated shell promoting photocatalytic H 2 evolution on anatase TiO2. Nature communications, 9(1), 2752..
[4] Fitra, M., Daut, I., Irwanto, M., Gomesh, N., & Irwan, Y. M. (2013). TiO2 dye sensitized solar cells cathode using recycle battery. Energy Procedia, 36, 333-340.
[5] Sharma, V., Kumar, S., & Krishnan, V. (2016). Shape selective Au-TiO2 nanocomposites for photocatalytic applications. Materials Today: Proceedings, 3(6), 1939-1948.
[6] Dahlan, D., Saad, S. K. M., Berli, A. U., Bajili, A., & Umar, A. A. (2017). Synthesis of two-dimensional nanowall of Cu-Doped TiO2 and its application as photoanode in DSSCs. Physica E: Low-dimensional Systems and Nanostructures, 91, 185-189.
[7] Fu, F., Zhang, Y., Yan, L., Wang, Y., Gao, X., & Wang, D. (2017). Preparation of efficient Ag/AgBr/TiO2 visible light photocatalyst for destruction of MB. Journal of Materials Science: Materials in Electronics, 28(1), 691-696.
[8] Krzysztof Biernat, Artur Malinowski and Malwina Gnat, “The Possibility of Future Biofuels Production Using Waste Carbon Dioxide and Solar Energy
[9] Bai, X., Sun, C., Xu, J., Liu, D., Han, Y., Wu, S., & Luo, X. (2018). Detoxification of zearalenone from corn oil by adsorption of functionalized GO systems. Applied Surface Science, 430, 198-207.
[10] Zahed, M., Parsamehr, P. S., Tofighy, M. A., & Mohammadi, T. (2018). Synthesis and functionalization of graphene oxide (GO) for salty water desalination as adsorbent. Chemical Engineering Research and Design, 138, 358-365.
[11] Pan, L., Wang, S., Xie, J., Wang, L., Zhang, X., & Zou, J. J. (2016). Constructing TiO2 pn homojunction for photoelectrochemical and photocatalytic hydrogen generation. Nano Energy, 28, 296-303.
[12] Hao, C., Wang, W., Zhang, R., Zou, B., & Shi, H. (2018). Enhanced photoelectrochemical water splitting with TiO2@ Ag2O nanowire arrays via pn heterojunction formation. Solar Energy Materials and Solar Cells, 174, 132-139.
[13] Das, D. P., Baliarsingh, N., & Parida, K. M. (2007). Photocatalytic decolorisation of methylene blue (MB) over titania pillared zirconium phosphate (ZrP) and titanium phosphate (TiP) under solar radiation. Journal of Molecular Catalysis A: Chemical, 261(2), 254-261.
[14] Kandiel, T. A., Ahmed, A. Y., & Bahnemann, D. (2016). TiO2 (B)/anatase heterostructure nanofibers decorated with anatase nanoparticles as efficient photocatalysts for methanol oxidation. Journal of Molecular Catalysis A: Chemical, 425, 55-60.
[15] Yamashita, Y., Ishiguro, K., Nakai, D., & Fuji, M. (2018). The synthesis of a porous-type of TiO2 with rutile structure. Advanced Powder Technology, 29(10), 2521-2526.
[16] Bellardita, M., Di Paola, A., Megna, B., & Palmisano, L. (2017). Absolute crystallinity and photocatalytic activity of brookite TiO2 samples. Applied Catalysis B: Environmental, 201, 150-158.
[17] Beegam, M. S., Ullattil, S. G., & Periyat, P. (2018). Selective Solar Photocatalysis by High Temperature Stable Anatase TiO2. Solar Energy, 160, 10-17.
[18] Dong, Y., Fei, X., Liu, Z., Zhou, Y., & Cao, L. (2017). Synthesis and photocatalytic redox properties of anatase TiO2 single crystals. Applied Surface Science, 394, 386-393..
[19] Burdett, J. K., Hughbanks, T., Miller, G. J., Richardson Jr, J. W., & Smith, J. V. (1987). Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. Journal of the American Chemical Society, 109(12), 3639-3646.
[20] Szymańska-Chargot, M., Gruszecka, A., Smolira, A., Bederski, K., Głuch, K., Cytawa, J., & Michalak, L. (2009). Formation of nanoparticles and nanorods via UV irradiation of AgNO3 solutions. Journal of Alloys and Compounds, 486(1-2), 66-69.
[21] Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., ... & Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. carbon, 45(7), 1558-1565.
[22] Xu, Y., Bai, H., Lu, G., Li, C., & Shi, G. (2008). Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. Journal of the American Chemical Society, 130(18), 5856-5857.
[23] Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., ... & Banerjee, S. K. (2009). Large-area synthesis of high-quality and uniform graphene films on copper foils. science, 324(5932), 1312-1314.
[24] Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical society reviews, 39(1), 228-240.
[25] Taylor, G. I. (1969). Electrically driven jets. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 313(1515), 453-475.
[26] Agarwal, S., Wendorff, J. H., & Greiner, A. (2008). Use of electrospinning technique for biomedical applications. Polymer, 49(26), 5603-5621.
[27] Liu, C., Li, X., Liu, T., Liu, Z., Li, N., Zhang, Y., ... & Feng, X. (2016). Microporous CA/PVDF membranes based on electrospun nanofibers with controlled crosslinking induced by solvent vapor. Journal of membrane science, 512, 1-12.
[28] Wei, H., Zhang, F., Zhang, D., Liu, Y., & Leng, J. (2015). Shape‐memory behaviors of electrospun chitosan/poly (ethylene oxide) composite nanofibrous membranes. Journal of Applied Polymer Science, 132(37).
[29] Gupta, P., Elkins, C., Long, T. E., & Wilkes, G. L. (2005). Electrospinning of linear homopolymers of poly (methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer, 46(13), 4799-4810.
[30] Tao, J., & Shivkumar, S. (2007). Molecular weight dependent structural regimes during the electrospinning of PVA. Materials letters, 61(11-12), 2325-2328.
[31] Fukushima, S., Karube, Y., & Kawakami, H. (2010). Preparation of ultrafine uniform electrospun polyimide nanofiber. Polymer journal, 42(6), 514.
[32] Fuh, Y. K., Wu, Y. C., He, Z. Y., Huang, Z. M., & Hu, W. W. (2016). The control of cell orientation using biodegradable alginate fibers fabricated by near-field electrospinning. Materials Science and Engineering: C, 62, 879-887.
[33] Casper, C. L., Stephens, J. S., Tassi, N. G., Chase, D. B., & Rabolt, J. F. (2004). Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules, 37(2), 573-578.
[34] Lee, J. H., & Kim, Y. J. (2014). Hydroxyapatite nanofibers fabricated through electrospinning and sol–gel process. Ceramics International, 40(2), 3361-3369.
[35] Jaoude, M. A., Polychronopoulou, K., Hinder, S. J., Katsiotis, M. S., Baker, M. A., Greish, Y. E., & Alhassan, S. M. (2016). Synthesis and properties of 1D Sm-doped CeO2 composite nanofibers fabricated using a coupled electrospinning and sol–gel methodology. Ceramics International, 42(9), 10734-10744.
[36] Kurtan, U., Topkaya, R., & Baykal, A. (2013). Sol–gel auto-combustion synthesis of PVP/CoFe2O4 nanocomposite and its magnetic characterization. Materials Research Bulletin, 48(11), 4889-4895.
[37] Henglein, A. (1989). Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chemical reviews, 89(8), 1861-1873.
[38] Huang, F., Yan, A., & Zhao, H. (2016). Influences of doping on photocatalytic properties of TiO2 photocatalyst. Semiconductor Photocatalysis—Materials, Mechanisms and Applications; Cao, W., Ed, 31-80.
[39] Lee, J., Bartelt-Hunt, S. L., Li, Y., & Gilrein, E. J. (2016). The influence of ionic strength and organic compounds on nanoparticle TiO2 (n-TiO2) aggregation. Chemosphere, 154, 187-193.
[40] Koltsakidou, Α., Antonopoulou, M., Εvgenidou, Ε., Konstantinou, I., Giannakas, A. E., Papadaki, M., ... & Lambropoulou, D. A. (2017). Photocatalytical removal of fluorouracil using TiO2-P25 and N/S doped TiO2 catalysts: A kinetic and mechanistic study. Science of The Total Environment, 578, 257-267.
[41] Ortiz, L. G., Bonilla, H. G., Salazar, J. S., Olvera, M., Karthik, T. V. K., González, E. C., & Gómez, J. R. (2014). Low-temperature synthesis and gas sensitivity of perovskite-type LaCoO 3 nanoparticles. Journal of Nanomaterials, 2014, 61.
[42] Ghafari, E., Feng, Y., Liu, Y., Ferguson, I., & Lu, N. (2017). Investigating process-structure relations of ZnO nanofiber via electrospinning method. Composites Part B: Engineering, 116, 40-45.
[43] Li, X. Z., Li, F. B., Yang, C. L., & Ge, W. K. (2001). Photocatalytic activity of WOx-TiO2 under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 141(2-3), 209-217.
[44] Zhang, J., Cai, D., Zhang, G., Cai, C., Zhang, C., Qiu, G., ... & Wu, Z. (2013). Adsorption of methylene blue from aqueous solution onto multiporous palygorskite modified by ion beam bombardment: Effect of contact time, temperature, pH and ionic strength. Applied Clay Science, 83, 137-143.
[45] Liu, L., Guo, P., Chai, L., Shi, Q., Xu, B., Yuan, J., ... & Zhang, W. (2014). Fluorescent and colorimetric detection of pH by a rhodamine-based probe. Sensors and Actuators B: Chemical, 194, 498-502.
[46] Wang, T., Wei, J., Shi, H., Zhou, M., Zhang, Y., Chen, Q., & Zhang, Z. (2017). Preparation of electrospun Ag/TiO2 nanotubes with enhanced photocatalytic activity based on water/oil phase separation. Physica E: Low-dimensional Systems and Nanostructures, 86, 103-110.
[47] Wang, L., Ali, J., Zhang, C., Mailhot, G., & Pan, G. (2017). Simultaneously enhanced photocatalytic and antibacterial activities of TiO2/Ag composite nanofibers for wastewater purification. Journal of Environmental Chemical Engineering..
[48] Alazmi, A., Rasul, S., Patole, S. P., & Costa, P. M. (2016). Comparative study of synthesis and reduction methods for graphene oxide. Polyhedron, 116, 153-161.
[49] Zhang, L., Zhang, Q., Xie, H., Guo, J., Lyu, H., Li, Y., ... & Guo, Z. (2017). Electrospun titania nanofibers segregated by graphene oxide for improved visible light photocatalysis. Applied Catalysis B: Environmental, 201, 470-478.
[50] 楊士弘,“金屬氧化物奈米結構應用於氣體感測器.”國立高雄應用科技大學機械工程系碩士班, 高雄市, 2015.[51] 郭恩宇,“La0.8Sr0.2Co0.5Ni0.5O3 - ZnO異質結構之特性與應用.”國立高雄應用科技大學機械工程系碩士班, 高雄市, 2018.[52] 吳佩岑,“二氧化鈦奈米管於濕度與氣體感測器之研究.”國 立高雄應用科技大學機械工程系碩士班, 高雄市, 2014.[53] 黃伯融,“以靜電紡絲製備氧化鋅奈米線於氣體感測研究”,國立成功大學碩士論文, 2008。