|
REFERENCES Aboelmaged, M. G. (2014). Predicting e-readiness at firm-level: An analysis of technological, organizational and environmental (TOE) effects on e-maintenance readiness in manufacturing firms. International Journal of Information Management, 34(5), 639-651. Affia, I., Yani, L. P. E., & Aamer, A. M. (2019). Factors affecting IoT adoption in food supply chain management. In 9th International Conference on Operations and Supply Chain Management (pp. 19-24). Al Hadwer, A., Tavana, M., Gillis, D., & Rezania, D. (2021). A systematic review of organizational factors impacting cloud-based technology adoption using Technology-organization-environment framework. Internet of Things, 15, 100407. Allen, R. (2019). Five lessons for applying machine learning. Research-Technology Management, 62(3), 38-44. Appier’s New Survey on AI Adoption in Asia Pacific: Indonesia Leads the Pack in AI Implementation. (2022). Appier. https://www.appier.com/en/press-media/appiers-new-survey-on-ai-adoption-in-asia-pacific-indonesia-leads-the-pack-in-ai-implementation Bag, S., Pretorius, J. H. C., Gupta, S., & Dwivedi, Y. K. (2021). Role of institutional pressures and resources in the adoption of big data analytics powered artificial intelligence, sustainable manufacturing practices and circular economy capabilities. Technological Forecasting and Social Change, 163, 120420. Baker, J. (2012). The technology–organization–environment framework. Information Systems Theory: Explaining and Predicting Our Digital Society, 231-245. Baryannis, G., Validi, S., Dani, S., & Antoniou, G. (2019). Supply chain risk management and artificial intelligence: state of the art and future research directions. International Journal of Production Research, 57(7), 2179-2202. Brynjolfsson, E., & Mcafee, A. N. D. R. E. W. (2017). Artificial intelligence, for real. Harvard business review, 1, 1-31. Bughin, J., Hazan, E., Ramaswamy, S., Chui, M., Allas, T., Dahlstrom, P., & Trench, M. (2017). Artificial intelligence: the next digital frontier? Burgess, A., & Burgess, A. (2018). AI in Action. The Executive Guide to Artificial Intelligence: How to identify and implement applications for AI in your organization, 73-89. Burrell, J. (2016). How the machine ‘thinks’: Understanding opacity in machine learning algorithms. Big data & society, 3(1), 2053951715622512. Calabrese, A., Dora, M., Levialdi Ghiron, N., & Tiburzi, L. (2022). Industry’s 4.0 transformation process: how to start, where to aim, what to be aware of. Production Planning & Control, 33(5), 492-512. Cao, G., Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2021). Understanding managers’ attitudes and behavioral intentions towards using artificial intelligence for organizational decision-making. Technovation, 106, 102312. Caron-Fasan, M. L., Lesca, N., Perea, C., & Beyrouthy, S. (2020). Adoption of enterprise social networking: Revisiting the IT innovation adoption model of Hameed et al. Journal of Engineering and Technology Management, 56, 101572. Chatterjee, S., Rana, N. P., Dwivedi, Y. K., & Baabdullah, A. M. (2021). Understanding AI adoption in manufacturing and production firms using an integrated TAM-TOE model. Technological Forecasting and Social Change, 170, 120880. Chaudhary, M. H., & Raza, S. T. (2021). The impact of artificial intelligence on supply chain management: A systematic review. Journal of Business Research, 134, 511-529. Chen, D. M., & Kim, D. J. (2021). The impact of artificial intelligence on medical imaging: A systematic review. Journal of the American Medical Association, 325(15), 1566-1577. Chen, D. Q., Preston, D. S., & Swink, M. (2015). How the use of big data analytics affects value creation in supply chain management. Journal of management information systems, 32(4), 4-39. Chen, H., Li, L., & Chen, Y. (2021). Explore success factors that impact artificial intelligence adoption on telecom industry in China. Journal of Management Analytics, 8(1), 36-68. Choi, T. M., Wallace, S. W., & Wang, Y. (2018). Big data analytics in operations management. Production and Operations Management, 27(10), 1868-1883. Chopra, S., & Meindl, P. (2021). Supply chain management: Strategy, planning, and operation (8th ed.). Pearson. Chui, M., & Malhotra, S. (2018). AI adoption advances, but foundational barriers remain. Mckinsey and company. Clohessy, T., Acton, T., & Rogers, N. (2019). Blockchain adoption: Technological, organisational and environmental considerations. Business Transformation through Blockchain, 47-76. Collin, J., Eloranta, E., & Holmström, J. (2009). How to design the right supply chains for your customers. Supply Chain Management: An International Journal, 411-417. Connally, P. N., & Morris, L. R. (2019). The impact of emerging technology on leadership development. In Human Performance Technology: Concepts, Methodologies, Tools, and Applications (pp. 1867-1875). IGI Global. Constantinides, P., Henfridsson, O., & Parker, G. G. (2018). Introduction—platforms and infrastructures in the digital age. Information Systems Research, 29(2), 381-400. Council of Supply Chain Management Professionals, Supply Chain Management Definition, 2021, https://cscmp.org/about/what-is-supply-chain-management Cubric, M. (2020). Drivers, barriers and social considerations for AI adoption in business and management: A tertiary study. Technology in Society, 62, 101257. Dale, M. (2018). Automating grocery shopping. Imaging and Machine Vision Europe, (85), 16-20. Dash, R., McMurtrey, M., Rebman, C., & Kar, U. K. (2019). Application of artificial intelligence in automation of supply chain management. Journal of Strategic Innovation and Sustainability, 14(3), 43-53. Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard business review, 96(1), 108-116. De Jesus, A. (2019). AI for pricing–comparing 5 current applications. Emerj Artificial Intelligence Research, 2-5. Deb, S. K., Jain, R., & Deb, V. (2018). Artificial intelligence―creating automated insights for customer relationship management. In 2018 8th international conference on cloud computing, data science & engineering (Confluence) (pp. 758-764). IEEE. DenkWerk. (2018). Artifcial Intelligence in Nederland: Zelf Aan Het Stuur. Available at: https://denkwerk.online/media/1029/artitifcial_intelligence_in_nederland_juli_2018.pdf Dolgui, A., Ivanov, D., & Sokolov, B. (2018). Ripple effect in the supply chain: an analysis and recent literature. International Journal of Production Research, 56(1-2), 414-430. Druehl, C., Carrillo, J., & Hsuan, J. (2018). Technological innovations: Impacts on supply chains (pp. 259-281). Springer International Publishing. Dubey, R., Gunasekaran, A., Childe, S. J., Blome, C., & Papadopoulos, T. (2019). Big data and predictive analytics and manufacturing performance: integrating institutional theory, resource‐based view and big data culture. British Journal of Management, 30(2), 341-361. Dutta, P., Choi, T. M., Somani, S., & Butala, R. (2020). Blockchain technology in supply chain operations: Applications, challenges and research opportunities. Transportation research part e: Logistics and transportation review, 142, 102067. Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., ... & Williams, M. D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice, and policy. International Journal of Information Management, 57, 101994. Enholm, I. M., Papagiannidis, E., Mikalef, P., & Krogstie, J. (2022). Artificial intelligence and business value: A literature review. Information Systems Frontiers, 24(5), 1709-1734. Epiphaniou, G., Bottarelli, M., Al-Khateeb, H., Ersotelos, N. T., Kanyaru, J., & Nahar, V. (2020). Smart distributed ledger technologies in Industry 4.0: Challenges and opportunities in supply chain management. Cyber Defence in the Age of AI, Smart Societies and Augmented Humanity, 319-345. Esmaeilian, B., Sarkis, J., Lewis, K., & Behdad, S. (2020). Blockchain for the future of sustainable supply chain management in Industry 4.0. Resources, Conservation and Recycling, 163, 105064. Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. nature, 542(7639), 115-118. Fatorachian, H., & Kazemi, H. (2021). Impact of Industry 4.0 on supply chain performance. Production Planning & Control, 32(1), 63-81. Fildes, R., Ma, S., & Kolassa, S. (2022). Retail forecasting: Research and practice. International Journal of Forecasting, 38(4), 1283-1318. Foo, K.L., & Virzi, A.M. (2018, July 19). Marketing Data and Analytics Survey 2018: Messy Data and Mismatched Resources Undermine Marketing Teams. Gartner research, 10-15. Fountaine, T., McCarthy, B., & Saleh, T. (2019). Building the AI-powered organization. Harvard Business Review, 97(4), 62-73. Francisco, K., & Swanson, D. (2018). The supply chain has no clothes: Technology adoption of blockchain for supply chain transparency. Logistics, 2(1), 2-5. Gaggioli, A. (2018). Virtual personal assistants: an emerging trend in artificial intelligence. Cyberpsychology, Behavior, and Social Networking, 21(12), 803-804. Gartner. 2017. “Top Trends in the Gartner Hype Cycle for Emerging Technologies.” Available online at: https://www.gartner.com/smarterwithgartner/top-trends-in-the-gartner-hype-cycle-for-emerging-technologies-2017. Gokalp, E., Coban, S., & Gokalp, M. O. (2019). Acceptance of Blockchain Based Supply Chain Management System: Research Model Proposal [Blokzincir Tabanli Tedarik Zinciri Yönetimi Sistemi Kabulü: Arastirma Modeli Önerisi]. 1st International Informatics and Software Engineering Conference: Innovative Technologies for Digital Transformation, IISEC 2019 – Proceedings Hahn, G. J. (2020). Industry 4.0: a supply chain innovation perspective. International Journal of Production Research, 58(5), 1425-1441. Hall, W., & Pesenti, J. (2017). Growing the artificial intelligence industry in the UK. Department for Digital, Culture, Media & Sport and Department for Business, Energy & Industrial Strategy. Part of the Industrial Strategy UK and the Commonwealth. Hameed, M. A., Counsell, S., & Swift, S. (2012). A conceptual model for the process of IT innovation adoption in organizations. Journal of Engineering and Technology Management, 29(3), 358-390. Hassan, A. (2018). Augmented Reality for Tourist Destination Image Formation. In Encyclopedia of Information Science and Technology, Fourth Edition (pp. 4031-4037). IGI Global. Haudi, H., Rahadjeng, E., Santamoko, R., Putra, R., Purwoko, D., Nurjannah, D., ... & Purwanto, A. (2022). The role of e-marketing and e-CRM on e-loyalty of Indonesian companies during Covid pandemic and digital era. Uncertain Supply Chain Management, 10(1), 217-224. Helo, P., & Hao, Y. (2022). Artificial intelligence in operations management and supply chain management: An exploratory case study. Production Planning & Control, 33(16), 1573-1590. Henriques, R., & Feiteira, I. (2018). Predictive modelling: flight delays and associated factors, hartsfield–Jackson Atlanta International airport. Procedia computer science, 138, 638-645. Hradecky, D., Kennell, J., Cai, W., & Davidson, R. (2022). Organizational readiness to adopt artificial intelligence in the exhibition sector in Western Europe. International journal of information management, 65, 102497. Hutchinson, P. (2020). Reinventing innovation management: the impact of self-innovating artificial intelligence. IEEE Transactions on Engineering Management, 68(2), 628-639. Ikumoro, A. O., & Jawad, M. S. (2019). Intention to use intelligent conversational agents in e-commerce among Malaysian SMEs: an integrated conceptual framework based on tri-theories including unified theory of acceptance, use of technology (UTAUT), and TOE. International Journal of Academic Research in Business and Social Sciences, 9(11), 205-235. Jaidka, K., Goyal, T., & Chhaya, N. (2018, May). Predicting email and article clickthroughs with domain-adaptive language models. In Proceedings of the 10th ACM Conference on Web Science (pp. 177-184). Kamble, S. S., Gunasekaran, A., Kumar, V., Belhadi, A., & Foropon, C. (2021). A machine learning based approach for predicting blockchain adoption in supply Chain. Technological Forecasting and Social Change, 163, 120465. Kamble, S., Gunasekaran, A., & Arha, H. (2019). Understanding the Blockchain technology adoption in supply chains-Indian context. International Journal of Production Research, 57(7), 2009-2033. Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business horizons, 62(1), 15-25. Kar, U. K., & Dash, R. (2018). The Future of health and healthcare in a world of artificial intelligence. Archives in Biomedical Engineering & Biotechnology, 1(1). Kelleher, C., & Stone, M. (2021). The impact of artificial intelligence on supply chain management: A systematic review. Journal of Management Information Systems, 38(1), 5-44. Khorram, M., Faria, P., Abrishambaf, O., & Vale, Z. (2019, January). Demand response implementation in an optimization based SCADA model under real-time pricing schemes. In Distributed Computing and Artificial Intelligence, Special Sessions, 15th International Conference (pp. 21-29). Cham: Springer International Publishing. Kietzmann, J., Paschen, J., & Treen, E. (2018). Artificial intelligence in advertising: How marketers can leverage artificial intelligence along the consumer journey. Journal of Advertising Research, 58(3), 263-267. Kinkel, S., Baumgartner, M., & Cherubini, E. (2022). Prerequisites for the adoption of AI technologies in manufacturing–Evidence from a worldwide sample of manufacturing companies. Technovation, 110, 102375. Klumpp, M. (2018). Automation and artificial intelligence in business logistics systems: human reactions and collaboration requirements. International Journal of Logistics Research and Applications, 21(3), 224-242. Kolinski, A., A. Horzela, M. Cudzilo, and R. Domanski. 2020. “Reference Model of Information Flow in Business Relations with 4pl Operator.” In Integration of Information Flow for Greening Supply Chain Management, edited by A. Kolinski, D. Dujak, and P. Golinska-Dawson, 19–45. Cham: Springer. Korolov, M. 2018. “AI in the Supply Chain: Logistics Gets Smart.” CIO. Supply Chain Management. Available at: https://www.cio.com/article/ 3269513/ai-in-the-supply-chain-logistics-get-smart.html Kraus, J., Lališ, A., Plos, V., Vittek, P., & Stojić, S. (2018). Utilizing ontologies and structural conceptual models for safety data management in aviation maintenance, repair and overhaul organizations. Transportation research procedia, 35, 35-43. Kshetri, N. (2021). Data labeling for the artificial intelligence industry: Economic impacts in developing countries. IT Professional, 23(2), 96-99. Kumar, A., & Krishnamoorthy, B. (2020). Business analytics adoption in firms: A qualitative study elaborating TOE framework in India. International Journal of Global Business and Competitiveness, 15(2), 80-93. Kumar, K. S., Tamilselvan, S., Sha, B. I., Harish, S., & Student, B. E. (2018). Artificial Intelligence Powered Banking Chatbot. International Journal of Engineering Science and Computing, 8-10. Kurdi, B., Alzoubi, H., Akour, I., & Alshurideh, M. (2022). The effect of blockchain and smart inventory system on supply chain performance: Empirical evidence from retail industry. Uncertain Supply Chain Management, 10(4), 1111-1116. Kusiak, A. (2018). Smart manufacturing. International Journal of Production Research, 56(1-2), 508-517. Lamba, K., and S. P. Singh. 2017. “Big Data in Operations and Supply Chain Management: Current Trends and Future Perspectives.” Production Planning & Control 28 (11-12), 877–890. Le Tan, T. (2022). Critical Factors impact Artificial Intelligence Implementation in Supply Chain Management. Case study Danang SMEs. JISCOS, 2(1), 27-33. Lee, W. J., H. Wu, H. Yun, H. Kim, M. B. Jun, and J. W. Sutherland. 2019. “Predictive Maintenance of Machine Tool Systems Using Artificial Intelligence Techniques Applied to Machine Condition Data.” Procedia CIRP 80, 506–511. Li, Y., Li, J., & Chen, J. (2020). The COVID-19 pandemic's impact on global supply chains: A comparative analysis. Journal of International Business Studies, 51(8), 1271-1281 Manyika, J., Bughin, J., (2018). The Promise and Challenge of the Age of Artificial Intelligence. McKinsey Global Institute, 32-35. Maroufkhani, P., Wan Ismail, W. K., & Ghobakhloo, M. (2020). Big data analytics adoption model for small and medium enterprises. Journal of Science and Technology Policy Management, 11(4), 483-513. Martin, C., & Leurent, H. (2017, March). Technology and innovation for the future of production: Accelerating value creation. In World Economic Forum (pp. 1-38). Mathur, P., & Mathur, P. (2019). Key technological advancements in retail. Machine Learning Applications Using Python: Cases Studies from Healthcare, Retail, and Finance, 159-181. Meng, F. J., Xu, J., Zhang, X., Yang, L., Chen, P., Wang, Y., & Zheng, J. (2018, March). Opportunities and Challenges Towards Cognitive IT Service Management in the Real World. In 2018 IEEE Symposium on Service-Oriented System Engineering (SOSE) (pp. 164-173). IEEE Computer Society. Merhi, M. I. (2021). Evaluating the critical success factors of data intelligence implementation in the public sector using analytical hierarchy process. Technological Forecasting and Social Change, 173, 121180. Metz, R. (2018). Amazon’s cashier-less Seattle grocery store is opening to the public. MIT Tech Review, 5-7. Mewari, M. M., & Kamath, G. (2022). 17 Remarkable Use Cases of AI in the Manufacturing Industry. Birlasoft. https://www.birlasoft.com/articles/17-use-cases-of-ai-in-manufacturing Mikalef, P., & Gupta, M. (2021). Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Information & Management, 58(3), 103434. Milford, M., & Mortimer, G. (2018). When AI meets your shopping experience it knows what you buy-and what you ought to buy. The Conversation. Min, H. (2010). Artificial intelligence in supply chain management: theory and applications. International Journal of Logistics: Research and Applications, 13(1), 13-39. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., et. al. (2015, February 26). Human level control through deep reinforcement learning. Nature, 518(7540), 529-33. Nam, K., Dutt, C. S., Chathoth, P., Daghfous, A., & Khan, M. S. (2021). The adoption of artificial intelligence and robotics in the hotel industry: Prospects and challenges. Electronic Markets, 31, 553-574. Ni, D., Xiao, Z., & Lim, M. K. (2020). A systematic review of the research trends of machine learning in supply chain management. International Journal of Machine Learning and Cybernetics, 11(7), 1463-1482. Nilashi, M., Ahmadi, H., Ahani, A., Ravangard, R., & bin Ibrahim, O. (2016). Determining the importance of hospital information system adoption factors using fuzzy analytic network process (ANP). Technological Forecasting and Social Change, 111, 244-264. Nilsson, N. J. (2009). The quest for artificial intelligence. Cambridge University Press. Nitzberg, M., & Zysman, J. (2022). Algorithms, data, and platforms: the diverse challenges of governing AI. Journal of European Public Policy, 29(11), 1753-1778. Nozari, H., & Nahr, J. G. (2022). The Impact of Blockchain Technology and The Internet of Things on the Agile and Sustainable Supply Chain. International Journal of Innovation in Engineering, 2(2), 33-41. O’Reilly, C., & Binns, A. J. (2019). The three stages of disruptive innovation: Idea generation, incubation, and scaling. California Management Review, 61(3), 49-71. Paolanti, M., Liciotti, D., Pietrini, R., Mancini, A., & Frontoni, E. (2018). Modelling and forecasting customer navigation in intelligent retail environments. Journal of Intelligent & Robotic Systems, 91, 165-180. Patel, P., Ali, M. I., & Sheth, A. (2018). From raw data to smart manufacturing: AI and semantic web of things for industry 4.0. IEEE Intelligent Systems, 33(4), 79-86. Perez, D., Samothrakis, S., & Lucas, S. (2014, August). Knowledge-based fast evolutionary MCTS for general video game playing. In 2014 IEEE Conference on Computational Intelligence and Games (pp. 1-8). IEEE. Pierce, J. L., & Delbecq, A. L. (1977). Organization structure, individual attitudes and innovation. Academy of management review, 2(1), 27-37. Pillai, R., Sivathanu, B., Mariani, M., Rana, N. P., Yang, B., & Dwivedi, Y. K. (2022). Adoption of AI-empowered industrial robots in auto component manufacturing companies. Production Planning & Control, 33(16), 1517-1533. Pournader, M., Ghaderi, H., Hassanzadegan, A., & Fahimnia, B. (2021). Artificial intelligence applications in supply chain management. International Journal of Production Economics, 241, 108250. Quagli, A., Roncagliolo, E., & D’Alauro, G. (2021). The preparedness to adopt new accounting standards: A study of European companies on the pre-adoption phase of IFRS 15. International Journal of Disclosure and Governance, 18(3), 290-303. Ransbotham, S., Gerbert, P., Reeves, M., Kiron, D., & Spira, M. (2018). Artificial intelligence in business gets real. MIT sloan management review. Riahi, Y., Saikouk, T., Gunasekaran, A., & Badraoui, I. (2021). Artificial intelligence applications in supply chain: A descriptive bibliometric analysis and future research directions. Expert Systems with Applications, 173, 114702. Roden, S., Nucciarelli, A., Li, F., & Graham, G. (2017). Big data and the transformation of operations models: a framework and a new research agenda. Production Planning & Control, 28(11-12), 929-944. Rogers, E. M. (2003). Diffusion of Innovations (5th Edition). Free Press, New York. Russel, S., & Norvig, P. (2013). Artificial intelligence: a modern approach (Vol. 256). London: Pearson Education Limited. Saberi, S., Kouhizadeh, M., Sarkis, J., & Shen, L. (2019). Blockchain technology and its relationships to sustainable supply chain management. International Journal of Production Research, 57(7), 2117-2135. Samuel, S., Heilweil, R., Piper, K., 2019. The Rapid Development of AI Has Benefits and Poses Serious Risks. VOX. Seligman, J. (2018). Artificial intelligence and machine learning and marketing management. Lulu. com. Seyedghorban, Z., Tahernejad, H., Meriton, R., & Graham, G. (2020). Supply chain digitalization: past, present and future. Production Planning & Control, 31(2-3), 96-114. Shegelman, I. R., Kirilina, V. M., Vasilev, A. S., Blazhevich, L. E., & Smirnova, O. E. (2020). Supply chain management application in functional food industry. International Journal of Supply Chain Management, 3(3), 537. Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., ... & Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree search. nature, 529(7587), 484-489. Simões, A. C., Soares, A. L., & Barros, A. C. (2020). Factors influencing the intention of managers to adopt collaborative robots (cobots) in manufacturing organizations. Journal of engineering and technology management, 57, 101574. Sohn, K., & Kwon, O. (2020). Technology acceptance theories and factors influencing artificial Intelligence-based intelligent products. Telematics and Informatics, 47, 101324. Sohrabpour, V., Oghazi, P., Toorajipour, R., & Nazarpour, A. (2021). Export sales forecasting using artificial intelligence. Technological Forecasting and Social Change, 163, 120480. Soleimani, S. (2018). A perfect triangle with: artificial intelligence, supply chain management, and financial technology. Archives of Business Research, 6(11). Solomonoff, R. J. (1985). The time scale of artificial intelligence: Reflections on social effects. Human Systems Management, 5(2), 149-153. Stenberg, L., & Nilsson, S. (2020). Factors influencing readiness of adopting AI: A qualitative study of how the TOE framework applies to AI adoption in governmental authorities. Sterne, J. (2018). From programming to statistics to machine learning for marketing. Applied Marketing Analytics, 3(4), 298-305. Stornelli, A., Ozcan, S., & Simms, C. (2021). Advanced manufacturing technology adoption and innovation: A systematic literature review on barriers, enablers, and innovation types. Research Policy, 50(6), 104229. Sun, S., Cegielski, C. G., Jia, L., & Hall, D. J. (2018). Understanding the factors affecting the organizational adoption of big data. Journal of computer information systems, 58(3), 193-203. Sutton, M., & Griffiths, M. D. (2018). Using date specific searches on Google Books to disconfirm prior origination knowledge claims for particular terms, words, and names. Social Sciences, 7(4), 66. Tatnall, A. (2009). Information systems, technology adoption and innovation translation. International Journal of Actor-Network Theory and Technological Innovation (IJANTTI), 1(1), 59-74. Tjahjono, B., Esplugues, C., Ares, E., & Pelaez, G. (2017). What does industry 4.0 mean to supply chain?. Procedia manufacturing, 13, 1175-1182. Toorajipour, R., Sohrabpour, V., Nazarpour, A., Oghazi, P., & Fischl, M. (2021). Artificial intelligence in supply chain management: A systematic literature review. Journal of Business Research, 122, 502-517. Tornatzky, L. G., Fleischer, M., & Chakrabarti, A. K. (1990). Processes of technological innovation. Lexington books. Tsang, Y. P., Choy, K. L., Wu, C. H., Ho, G. T., Lam, C. H., & Koo, P. S. (2018). An Internet of Things (IoT)-based risk monitoring system for managing cold supply chain risks. Industrial Management & Data Systems, 118(7), 1432-1462. Umapathy, K. (2009). The Influences and impacts of societal factors on the adoption of Web Services. In Handbook of research on social dimensions of semantic technologies and web services (pp. 568-587). IGI Global. Umeda, Y., H. Muto, M. Tomita, K. Kondoh, T. Kominami, and Y. Hidaka. 2017. “Warehouse Product Inspection System Achieves Work Efficiency and Quality Improvements.” NEC Technical Journal 12 (1): 40–44 Wamba-Taguimdje, S. L., Fosso Wamba, S., Kala Kamdjoug, J. R., & Tchatchouang Wanko, C. E. (2020). Influence of artificial intelligence (AI) on firm performance: the business value of AI-based transformation projects. Business Process Management Journal, 26(7), 1893-1924. Wang, Y. M., Wang, Y. S., & Yang, Y. F. (2010). Understanding the determinants of RFID adoption in the manufacturing industry. Technological forecasting and social change, 77(5), 803-815. Webster, C., & Ivanov, S. (2020). Robotics, artificial intelligence, and the evolving nature of work (pp. 127-143). Springer International Publishing. Wen, J., He, L., & Zhu, F. (2018). Swarm robotics control and communications: Imminent challenges for next generation smart logistics. IEEE Communications Magazine, 56(7), 102-107. Xing, F., Peng, G., Zhang, B., Li, S., & Liang, X. (2021). Socio-technical barriers affecting large-scale deployment of AI-enabled wearable medical devices among the ageing population in China. Technological Forecasting and Social Change, 166, 120609. Yang, Z., Sun, J., Zhang, Y., & Wang, Y. (2015). Understanding SaaS adoption from the perspective of organizational users: A tripod readiness model. Computers in Human Behavior, 45, 254-264. Yao, W. (2017). Analysis on the Application of the Artificial Intelligence Neural Network on the New Energy Micro Grid. Proceedings of the 2017 4th International Conference on Machinery, Materials and Computer (MACMC). Zhang, G., Hu, M. Y., Patuwo, B. E., & Indro, D. C. (1999). Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis. European journal of operational research, 116(1), 16-32. Zhang, S., Lee, C. K. M., Wu, K., & Choy, K. L. (2016). Multi-objective optimization for sustainable supply chain network design considering multiple distribution channels. Expert Systems with Applications, 65, 87-99. Zhang, X., Chan, F. T., Adamatzky, A., Mahadevan, S., Yang, H., Zhang, Z., & Deng, Y. (2017). An intelligent physarum solver for supply chain network design under profit maximization and oligopolistic competition. International journal of production research, 55(1), 244-263
|