|
References
1. Holl,J., Kowalewski,C., Zimek,Z., Fiedor,P., Kaminski,A., Oldak,T., Moniuszko,M., and Eljaszewicz,A. (2021). Chronic Diabetic Wounds and Their Treatment with Skin Substitutes. Cells 10. 2. Baltzis,D., Eleftheriadou,I., and Veves,A. (2014). Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights. Adv. Ther. 31, 817-836. 3. Neha Raina, Radha Rani, akesh Pahwa, and adhu Gupta (2020). Biopolymers and treatment strategies for wound healing: an insight view. International Journal of Polymeric Materials and Polymeric Biomaterials. 4. Subhan,F., Hussain,Z., Tauseef,I., Shehzad,A., and Wahid,F. (2021). A review on recent advances and applications of fish collagen. Crit Rev. Food Sci. Nutr. 61, 1027-1037. 5. Fotticchia,A., Musson,D., Lenardi,C., Demirci,E., and Liu,Y. (2018). Anisotropic cytocompatible electrospun scaffold for tendon tissue engineering elicits limited inflammatory response in vitro. J Biomater. Appl. 33, 127-139. 6. JieLi, Mingchao Wang, Yingyun Qiao, Yuanyu Tian, Junhong Liu, Song Qin, and Wenhui Wu (2018). Extraction and characterization of type I collagen from skin of tilapia (Oreochromis niloticus) and its potential application in biomedical scaffold material for tissue engineering. Process Biochemistry. 7. Lai,C.S., Tu,C.W., Kuo,H.C., Sun,P.P., and Tsai,M.L. (2020). Type II Collagen from Cartilage of Acipenser baerii Promotes Wound Healing in Human Dermal Fibroblasts and in Mouse Skin. Mar. Drugs 18. 8. Saeedi,P., Petersohn,I., Salpea,P., Malanda,B., Karuranga,S., Unwin,N., Colagiuri,S., Guariguata,L., Motala,A.A., Ogurtsova,K., Shaw,J.E., Bright,D., and Williams,R. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res. Clin. Pract. 157, 107843. 9. Gianino,E., Miller,C., and Gilmore,J. (2018). Smart Wound Dressings for Diabetic Chronic Wounds. Bioengineering. (Basel) 5. 10. Patel,S., Srivastava,S., Singh,M.R., and Singh,D. (2019). Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed. Pharmacother. 112, 108615. 11. Baltzis,D., Eleftheriadou,I., and Veves,A. (2014). Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights. Adv. Ther. 31, 817-836. 12. Gianino,E., Miller,C., and Gilmore,J. (2018). Smart Wound Dressings for Diabetic Chronic Wounds. Bioengineering. (Basel) 5. 13. Ramirez-Acuna,J.M., Cardenas-Cadena,S.A., Marquez-Salas,P.A., Garza-Veloz,I., Perez-Favila,A., Cid-Baez,M.A., Flores-Morales,V., and Martinez-Fierro,M.L. (2019). Diabetic Foot Ulcers: Current Advances in Antimicrobial Therapies and Emerging Treatments. Antibiotics. (Basel) 8. 14. Shah,A., and mini-Nik,S. (2017). The Role of Phytochemicals in the Inflammatory Phase of Wound Healing. Int. J Mol. Sci. 18. 15. Brownlee,M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813-820. 16. Papachristoforou,E., Lambadiari,V., Maratou,E., and Makrilakis,K. (2020). Association of Glycemic Indices (Hyperglycemia, Glucose Variability, and Hypoglycemia) with Oxidative Stress and Diabetic Complications. J Diabetes Res. 2020, 7489795. 17. Muthukumar,T., Prabu,P., Ghosh,K., and Sastry,T.P. (2014). Fish scale collagen sponge incorporated with Macrotyloma uniflorum plant extract as a possible wound/burn dressing material. Colloids Surf. B Biointerfaces. 113, 207-212. 18. Wang,L., Li,W., and Qin,S. (2021). Three Polymers from the Sea: Unique Structures, Directional Modifications, and Medical Applications. Polymers. (Basel) 13. 19. Xiong,X., Liang,J., Xu,Y., Liu,J., and Liu,Y. (2020). The wound healing effects of the Tilapia collagen peptide mixture TY001 in streptozotocin diabetic mice. J Sci. Food Agric. 100, 2848-2858. 20. Elbialy,Z.I., Atiba,A., Abdelnaby,A., Al-Hawary,I.I., Elsheshtawy,A., El-Serehy,H.A., bdel-Daim,M.M., Fadl,S.E., and Assar,D.H. (2020). Collagen extract obtained from Nile tilapia (Oreochromis niloticus L.) skin accelerates wound healing in rat model via up regulating VEGF, bFGF, and alpha-SMA genes expression. BMC. Vet. Res. 16, 352. 21. K.S.Silvipriya, K.Krishna Kumar, A.R.Bhat, B.Dinesh Kumar, Anish John, and Panayappan lakshmanan (2015). Collagen: Animal Sources and Biomedical Application. Journal of Applied Pharmaceutical Science Vol. 5 (03), pp. 123-127. 22. Zhu,L., Li,J., Wang,Y., Sun,X., Li,B., Poungchawanwong,S., and Hou,H. (2020). Structural feature and self-assembly properties of type II collagens from the cartilages of skate and sturgeon. Food Chem. 331, 127340. 23. Lim,Y.S., Ok,Y.J., Hwang,S.Y., Kwak,J.Y., and Yoon,S. (2019). Marine Collagen as A Promising Biomaterial for Biomedical Applications. Mar. Drugs 17. 24. Sun,L., Hou,H., Li,B., and Zhang,Y. (2017). Characterization of acid- and pepsin-soluble collagen extracted from the skin of Nile tilapia (Oreochromis niloticus). Int. J Biol. Macromol. 99, 8-14. 25. Zhou,T., Wang,N., Xue,Y., Ding,T., Liu,X., Mo,X., and Sun,J. (2016). Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation. Colloids Surf. B Biointerfaces. 143, 415-422. 26. Jin,L., Zheng,D., Yang,G., Li,W., Yang,H., Jiang,Q., Chen,Y., Zhang,Y., and Xie,X. (2020). Tilapia Skin Peptides Ameliorate Diabetic Nephropathy in STZ-Induced Diabetic Rats and HG-Induced GMCs by Improving Mitochondrial Dysfunction. Mar. Drugs 18. 27. Zhao,T., Zhou,Y., Mao,G., Zou,Y., Zhao,J., Bai,S., Yang,L., and Wu,X. (2013). Extraction, purification and characterisation of chondroitin sulfate in Chinese sturgeon cartilage. J Sci. Food Agric. 93, 1633-1640. 28. Khajavi,M., Hajimoradloo,A., Zandi,M., Pezeshki-Modaress,M., Bonakdar,S., and Zamani,A. (2021). Fish cartilage: A promising source of biomaterial for biological scaffold fabrication in cartilage tissue engineering. J Biomed. Mater. Res. A 109, 1737-1750. 29. J.S.Barbieri, K.Wanat, and J.Seykora (2014). Skin: Basic Structure and Function. Pathobiology of Human Disease. 30. Jean-Philippe Sylvestre (2007). APPLICATIONS OF IONTOPHORESIS IN SPORTS MEDICINE. ResearchGate. 31. Nystrom,A., and Bruckner-Tuderman,L. (2019). Matrix molecules and skin biology. Semin. Cell Dev. Biol. 89, 136-146. 32. Seifert,A.W., and Maden,M. (2014). New insights into vertebrate skin regeneration. Int. Rev. Cell Mol. Biol. 310, 129-169. 33. Wong,R., Geyer,S., Weninger,W., Guimberteau,J.C., and Wong,J.K. (2016). The dynamic anatomy and patterning of skin. Exp. Dermatol. 25, 92-98. 34. Hu,Z., Yang,P., Zhou,C., Li,S., and Hong,P. (2017). Marine Collagen Peptides from the Skin of Nile Tilapia (Oreochromis niloticus): Characterization and Wound Healing Evaluation. Mar. Drugs 15. 35. Fu,J., Huang,J., Lin,M., Xie,T., and You,T. (2020). Quercetin Promotes Diabetic Wound Healing via Switching Macrophages From M1 to M2 Polarization. J Surg. Res. 246, 213-223. 36. Louise Dunn, Hamish C.G Prosser, Joanne T.M.Tan, Laura Z.Vanags, Martin K.C.Ng, and Christina A.Bursill (2013). Murine Model of Wound Healing. Medicine. 37. Shomita S., Mathew-Steiner, ,S.R., and Chandan K.Sen (2021). Collagen in Wound Healing. MDPI. 38. Das,A., Abas,M., Biswas,N., Banerjee,P., Ghosh,N., Rawat,A., Khanna,S., Roy,S., and Sen,C.K. (2019). A Modified Collagen Dressing Induces Transition of Inflammatory to Reparative Phenotype of Wound Macrophages. Sci. Rep. 9, 14293. 39. Friedl,P., and Gilmour,D. (2009). Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 10, 445-457. 40. Goyal,S.N., Reddy,N.M., Patil,K.R., Nakhate,K.T., Ojha,S., Patil,C.R., and Agrawal,Y.O. (2016). Challenges and issues with streptozotocin-induced diabetes - A clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem. Biol. Interact. 244, 49-63. 41. Hwang,J.S., Kwon,M.Y., Kim,K.H., Lee,Y., Lyoo,I.K., Kim,J.E., Oh,E.S., and Han,I.O. (2017). Lipopolysaccharide (LPS)-stimulated iNOS Induction Is Increased by Glucosamine under Normal Glucose Conditions but Is Inhibited by Glucosamine under High Glucose Conditions in Macrophage Cells. J Biol. Chem. 292, 1724-1736. 42. Zhang,M., Zhang,R., Li,X., Cao,Y., Huang,K., Ding,J., Liu,M., Feng,Z., Yin,S., Ma,J., Zhang,H., and Wang,Y. (2020). CD271 promotes STZ-induced diabetic wound healing and regulates epidermal stem cell survival in the presence of the pTrkA receptor. Cell Tissue Res. 379, 181-193. 43. DeveshKapoor, RahulMaheshwari, KanikaVerma, SwapnilSharma, PiyushGhode, and Rakesh K.Tekade (2020). Coating technologies in pharmaceutical product development. Drug Delivery Systems. 44. Martin,P., and Nunan,R. (2015). Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br. J Dermatol. 173, 370-378. 45. Rousselle,P., Montmasson,M., and Garnier,C. (2019). Extracellular matrix contribution to skin wound re-epithelialization. Matrix Biol. 75-76, 12-26. 46. Shen,T., Dai,K., Yu,Y., Wang,J., and Liu,C. (2020). Sulfated chitosan rescues dysfunctional macrophages and accelerates wound healing in diabetic mice. Acta Biomater. 117, 192-203. 47. Michael H.Flint, Mary F.Lyons, M.F.Meaney, and D.E.Williams (19750). The Masson staining of collagen — an explanation of an apparent paradox. Springer Link. 48. Zhang,Z., Zhao,M., Wang,J., Ding,Y., Dai,X., and Li,Y. (2011). Oral administration of skin gelatin isolated from Chum salmon (Oncorhynchus keta) enhances wound healing in diabetic rats. Mar. Drugs 9, 696-711. 49. Shin-ichiro Okizaki, Yoshiya Ito, and Kanako Hosono (2015). Suppressed recruitment of alternatively activated macrophages reduces TGF-β1 and impairs wound healing in streptozotocin-induced diabetic mice. Biomedicine & Pharmacotherapy. 50. Waseem,A., Dogan,B., Tidman,N., Alam,Y., Purkis,P., Jackson,S., Lalli,A., Machesney,M., and Leigh,I.M. (1999). Keratin 15 expression in stratified epithelia: downregulation in activated keratinocytes. J Invest Dermatol. 112, 362-369.
|