|
[1] Lian, Z., Wang, H., 2002, “Experimental study of factors that affect thermal comfort in an upward-displacement air-conditioned room,” HVAC&R Res., 8(2), 191-200. [2]SeppȨnen, O., 2008, “Ventilation strategies for good indoor air quality and energy efficiency,” Int. J. Vent., 6(4), 297-306. [3]Gao, C. F., Lee, W. L., 2009, “Optimized design of floor-based air-conditioners for residential use,” Build. Environ., 44(10), 2080-2088. [4]Noh, K. C., Jang, J. S., Oh, M. D., 2007, “Thermal comfort and indoor air quality in the lecture room with 4-way cassette air-conditioner and mixing ventilation system,” Build. Environ., 42(2), 689-698. [5]Noh, K. C., Han, C. W., Oh, M. D., 2008, “Effect of the airflow rate of a ceiling type air-conditioner on ventilation effectiveness in a lecture room,” Int. J. Refrig., 31(2), 180-188. [6]Chow, W. K., Fung, W. Y., 1996, “Numerical studies on the indoor air flow in the occupied zone of ventilated and air-conditioned space,” Build. Environ., 31(4), 319-344. [7]Chow, W. K., 2001, “Numerical studies of airflows induced by mechanical ventilation and air-conditioning (MVAC) systems,” Appl. Energ., 68(2), 135-159. [8]Yongson, O., Badruddin, I.A., Zainal, Z.A., Narayana, P. A., 2007, “Airflow analysis in an air conditioning room,” Build. Environ., 42(3), 1531-1537. [9]Kavgic, M., Mumovic, D., Stevanovic, Z., Young, A., 2008, “Analysis of thermal comfort and indoor air quality in a mechanically ventilated theatre,” Energ. Buildings., 40(7), 1334-1343. [10]Dear, R. D., 2009, “The theory of thermal comfort in naturally ventilated indoor environments-“the pleasure principle”,” Int. J. Vent., 8(3), 243-250. [11]Mathews, E. H., Botha, C.P., Arndt, D.C., Malan, A., 2001, “HVAC control strategies to enhance comfort and minimise energyusage,” Energ. Buildings., 33(8), 853-863. [12]Lin, C. M., Liu, H. Y., Tseng, K. Y., Lin, S. F., 2019, “Heating, Ventilation, and Air Conditioning System Optimization Control Strategy Involving Fan Coil Unit Temperature Control,” Appl. Sci., 9(11), 2391. [13]Pretrel, H., Such, J. M., 2005, “Effect of ventilation procedures on the behaviour of a fire compartment scenario,” Nucl. Eng. Des., 235(20), 2155-2169. [14]Saber, H. H., Kashef, A., 2008a, “CFD simulations for different fire ventilation scenarios in a room,” 5th NRC Symposium on Computational Fluid Dynamics and Multi-scale Modelling, Ottawa, Ontario, Canada, January 21. [15]Saber, H. H., Kashef, A., 2008b, “CFD Simulations for Fully-Developed Fires in a Room under Different Ventilation Conditions,” 16th Annual Conference of the CFD Society of Canada, Saskatoon, Saskatchewan, Canada, June 9-11. [16]Drysdale, D., 2011, An introduction to fire dynamics, 3rd ed. John wiley & sons. [17]蔡銘儒,謝煒東,2007,建築物居室火災成長之研究-火災成長因素影響性探討,內政部建築研究所。 [18]Tsai, K. C., Chung, W. T., 2011, “Clarifying the mechanism of flashover from the view of unburned fuel volatiles and secondary fuels,” Proc. Combust. Inst., 33(2), 2649-2656. [19]Babrauskas, V., 1980, “Estimating room flashover potential,” Fire Technol., 16(2): 94-103. [20]Buchanan, A. H., Abu, A. K., 2017, Structural design for fire safety. John Wiley & Sons. [21]Kennedy, P., CFEI, C., 2003, “Flashover and fire analysis,” USA: Florida, 1-24. [22]Thomas, P. H., 1981, “Testing products and materials for their contribution to flashover in rooms,” Fire Mater., 5(3), 103-111. [23]Thomas, P. H., 1983, “Modelling of compartment fires,” Fire Saf. J., 5(3-4), 181-190. [24]Peacock, R. D., Reneke, P. A., Bukowski, R. W., Babrauskas, V., 1999, “Defining flashover for fire hazard calculations,” Fire Saf. J., 32(4), 331-345. [25]Tsai, K. C., Chen, H. H., 2010, “Experimental study of fuel sootiness effects on flashover,” J. Hazard. Mater., 178(1-3), 123-129. [26]Waterman, T. E., 1968, “Room flashover - Criteria and synthesis,” Fire Technol., 4(1), 25-31. [27]Hägglund, B., Jansson, R., Onnermark, B., 1974, “Fire development in residential rooms after ignition from nuclear explosions,” FOA-C-20016, Försvarets Forskningsanstalt. [28]Parker, W. J., Lee, B. T., 1974, “Fire build-up in reduced size enclosures,” In A Symposium on Fire Safety Research, NBS SP-411, pp. 139-153. [29]Heselden, A. J. M., Melinek, S. J., 1975, “The early stages of fire growth in a compartment. A co-operative research programme of the CIB, First Phase,”. Fire Research Note, 1029. [30]Fang, J. B., 1975, Fire buildup in a room and the role of interior finish materials. Vol. 13. US Department of Commerce, National Bureau of Standards. [31]Babrauskas, V., 1977, Combustion of mattresses exposed to flaming ignition sources. Vol. 77, No. 1290. Department of Commerce, National Bureau of Standards, Institute for Applied Technology, Center for Fire Research. [32]Budnick, E. K., Klein, D. P., O'laughlin, R. J., 1978, “Mobile Home Bedroom Fire Studies: The Role of Interior Finish,” NBSIR 78-1531. [33]Babrauskas, V., 1979, Full-scale burning behavior of upholstered chairs. Vol. 1103. Department of Commerce, National Bureau of Standards. [34]Lee, B. T., Breese, J. N., 1979, “Submarine Compartment Fire Study-Fire Performance Evaluation of Hull Insulation,” NBS (U.S.), NBSIR 78-1584. [35]Fang, J. B., Breese, J. N., 1980, “Fire Development in Residential Basement Rooms,” NBS (U.S.), NBSIR 80-2120. [36]Quintiere, J. G., McCaffrey, B. J., 1980, “The Burning of Wood and Plastic Cribs in an Enclosure,” Vol. 2. NBSIR, 80, 2054. [37]Spearpoint, M., Mowrer, F. W., McGrattan, K. B., 1999, “Simulation of a Compartment Flashover Fire Using Hand Calculations, Zone Models,” In Fire Research and Engineering, Third International Conference Proceedings, pp. 3-14. [38]Babrauskas, V., Peacock, R. D., Reneke, P. A., 2003, “Defining flashover for fire hazard calculations: Part II,” Fire Saf. J., 38(7), 613-622. [39]Lee, B. T., 1985, “Standard room fire test development at the National Bureau of Standards,” Fire safety: Science and Engineering, T.Z. Harmathy, ed. American Society for Testing and Materials. pp. 29-44. [40]Sundström, B., 1986, Full scale fire testing of surface materials: Measurements of heat relaease and prodcutions of smoke and gas species. [41]Thureson, P., 1996, “Fire tests of linings according to room/corner test, ISO 9705,” (Client report 95R22049). Boras: Swedish National Testing and Research Institute. [42]Cortés, D., Gil, D., Azorín, J., Vandecasteele, F., Verstockt, S., 2020, “A review of modelling and simulation methods for flashover prediction in confined space fires,” Appl. Sci., 10(16), 5609. [43]McGrattan, K., McDermott, R., Floyd, J., Hostikka, S., Forney, G., Baum, H., 2012, “Computational fluid dynamics modelling of fire,” Int. J. Comut. Fluid Dyn., 26(6-8), 349-361. [44]Sudheer, S., Saumil, D., Prabhu, S. V., 2013, “Physical experiments and Fire Dynamics Simulator simulations on gasoline pool fires,” J. fire sci., 31(4), 309-329. [45]Yuen, A. C. Y., Yeoh, G. H., Alexander, B., Cook, M., 2014, “Fire scene investigation of an arson fire incident using computational fluid dynamics based fire simulation,” Build. Simul., Tsinghua University Press. [46]Kumar, R., Jain, S., 2014, “Application of computational fluid dynamics for different fire strengths in a compartment using combustion modelling,” Fire Sci. Technol., 33(2), 35-46. [47]Evegren, F., Wickström, U., 2015, “New approach to estimate temperatures in pre-flashover fires: Lumped heat case,” Fire saf. J., 72, 77-86. [48]Zhao, G., Beji, T., Merci, B., 2016, “Application of FDS to under-ventilated enclosure fires with external flaming,” Fire technol., 52(6), 2117-2142. [49]Thomas, P. H., Bullen, M. L., Quintiere, J. G., McCaffrey, B. J., 1980, “Flashover and instabilities in fire behaviour,” Combust. Flame., 38, 159-171. [50]經濟部能源局,2008,空調系統管理與節能手冊,台灣綠色生產力基金會編印。 [51]Price, M., Butcher, K., 2008, Fan coil units. Chartered Institution of Building Services Engineers. [52]內政部消防署,2021,各類場所消防安全設備設置標準。 [53]內政部營建署,2022,建築技術規則建築設備編。 [54]臺南市政府,2012,新營醫院北門分院火災調查報告書。 [55]Wang, T. Y., Tsai, K. C., 2019,“Investigation Report of Bei-Men Hospital Fire in Taiwan on October 23, 2012,” In Proceedings of the 11th Asia-Oceania Symposium on Fire Science and Technology, Taipei, Taiwan, 24-25 October 2018; Springer: Singapore, 2020; pp. 857–865. [56]衛生福利部,2020,護理機構分類設置標準。 [57]內政部營建署,2021,建築技術規則建築設計施工編。 [58]Karlsson, B., Quintiere, J., 1999, Enclosure fire dynamics. CRC Press. [59]Harmathy, T. Z., 1978, “Mechanism of burning of fully-developed compartment fires,” Combust. Flame., 31, 265-273. [60]Heselden, A. J. M., Melinek, S. J., 1975, “The early stages of fire growth in a compartment. A co-operative research programme of the CIB,” First Phase. Fire Research Note, 1029. [61]Kawagoe, k., 1958, “Fire behaviour in rooms,” Report No. 27, Building Research Institute, Tokyo, 1958. [62]Song, H., Yang, L., Fan, W., 2001, “Numerical simulation of effect of ventilation on flashover,” Fire Saf. Sci., 10(3), 167-170 [63]Parkes, A. R., Fleischmann, C. M., 2005, “The impact of location and ventilation on pool fire in a compartment,” Fire Saf. Sci., 8, 1289-1300. [64]Tofilo, P., Delichatsios, M. A., Silcock, G.W.H., 2005, “Effect of fuel sootiness on the heat fluxes to the walls in enclosure fires,” Fire Saf. Sci., 8, 987-998. [65]Feng, R., Huo, R., Yu, H. C., 2005, “Experimental study on the character of oil-pool-fire burning in enclosed space,” Fire Sci. Technol., 24(3), 288-291. [66]Pierce, J. B. M., Moss J. B., 2007, “Smoke production, radiation heat transfer and fire growth in a liquid-fuelled compartment fire,” Fire Saf. J., 42(4), 310-320. [67]Kumar R., Naveen M., 2007, “An experimental fire in compartment with dual vent on opposite walls,” Combust. Sci. Technol., 179(8), 1527-1547. [68]Merci, B., Vandevelde, P., 2007, “Experimental study of natural roof ventilation in full-scale enclosure fire tests in a small compartment,” Fire Saf. J., 42(8), 523-535. [69]Merci, B., Van Maele, K., 2008, “Numerical simulations of full-scale enclosure fires in a small compartment with natural roof ventilation,” Fire Saf. J., 43(7), 495-511. [70]Mulholland, G. W., 1995, “Smoke production and properties,” SFPE handbook of fire protection engineering 3: 2-258. [71]Wang, T. Y., Tsai, K. C., 2020, “Effects of air inlet or outlet position of a fan coil unit ventilation system on smoke movement and fire severity,” Int. J. Vent., 1-15. [72]Suard S., Forestier M., Vaux S., 2013, “Toward predictive simulations of pool fires in mechanically ventilated compartments,” Fire Saf. J., 61, 54-64. [73]Wahlqvist j., Hees P. V., 2013, “Validation of FDS for large-scale well-confined mechanically ventilated fire scenarios with emphasis on predicting ventilation system behavior,” Fire Saf. J., 62, 102-114. [74]Jiang, F., Ye, S. S., Yang, J., 2002, “Design of the exhaust system in the confinement of the HTR-10,” Nucl. Eng. Des., 218(1-3), 209-214. [75]Audouin, L., Tourniaire B., 2000, “New estimation of the thermal interface height in forced-ventilation enclosure fires,” Fire Saf. Sci., 6: 555-566. [76]Le Saux, W., Pretrel, H., Lucchesi, C., Guillou, P., 2008, “Experimental study of the fire mass loss rate in confined and mechanically ventilated multi-room scenarios,” Fire Saf. Sci., 9, 943-954. [77]Audouin, L., Rigollet, L., Prétrel, H., Le Saux, W., Röwekamp, M., 2013, “OECD PRISME project: Fires in confined and ventilated nuclear-type multi-compartments-Overview and main experimental results,” Fire Saf. J., 62, 80-101. [78]Wahlqvist, J., Van Hees, P., 2013, “Validation of FDS for large-scale well-confined mechanically ventilated fire scenarios with emphasis on predicting ventilation system behavior,” Fire Saf. J., 62, 102-114. [79]Pretrel H., Querre P., Forestier M., 2005, “Experimental study of burning rate behavior in confined and ventilated fire compartments,” Fire Saf. Sci., 8, 1217-1228. [80]Pretrel, H., Such, J. M., 2005, “Effect of ventilation procedures on the behaviour of a fire compartment scenario,” Nucl. Eng. Des., 235(20), 2155-2169. [81]Pretrel H., Audouin L., 2011, “Doorway flows induced by the combined effects of natural and forced ventilation in a three compartment assembly,” Fire Saf. Sci., 10, 1015-1027. [82]Quintiere, J. G., 1989, “Fundamentals of enclosure fire zone models,” J. Fire Prot. Eng., 1(3), 99-119. [83]Peatross, M. J., Beyler, C. L., 1997, “Ventilation effects on compartment fire characterization,” Fire Saf. Sci., 5, 403-414. [84]Su, C. H., Tsai, K. C., Xu, M. Y., 2015, “Computational analysis on the performance of smoke exhaust systems in small vestibules of high-rise buildings,” J. Build. Perform. Simu., 8(4), 239-252. [85]Hu, L. H., Zhou, J. W., Huo, R., 2008, “Confinement of fire induced smoke and carbon monoxide transportation by air curtain in channels,” J. Hazard. Mater., 156, 327-334. [86]Wu, Z. K., 2015, “Research on fire prevention and smoke prevention separation technology of air curtain of open stairs in subway station,” Ph.D. thesis, University of science and Technology of China, Hefei. [87]Gao, D., Li, T., Mei, X., Chen, Z., You, S., Wang, Z., Lin, P., 2020, “Effectiveness of smoke confinement of air curtain in tunnel fire,” Fire technol., 56(5), 2283-2314. [88]McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., Overholt, K., 2013, Fire Dynamics Simulator, User’s Guide. NIST Special Publication 1019. National Institute of Standards and Technology, US Department of Commerce. [89]Forney, G. P., McGrattan K. B., 2004, User's Guide for Smokeview Version 4: A Tool for Visualizing Fire Dynamics Simulation Data. NIST Special Publication 1017. Gaithersburg, MD: National Institute of Standards and Technology. [90]Baum, H., McCaffrey, B., 1989, “Fire Induced Flow Field -Theory and Experiment,” Fire Saf. Sci., 2, 129-148. [91]Morgan, H. P., 1979, “Smoke control methods in enclosed shopping complexes of one or more storeys: a design summary,” Building Research Establishment Report. London, HMSO. [92]Tewarson, A., 2008, “Generation of heat and gaseous, liquid, and solid products in fires,” In P. J. DiNenno (Ed.), SFPE handbook of fire protection engineering, 4th ed, 3. National Fire Protection Association, pp. 109-194. [93]Klote J. H., 1994, “Method of predicting smoke movement in atria with application to smoke management,” NISTIR 5516, Gaithersburg, MD: National Institute of Standards and Technology. [94] Hadjisophocleous, G. V., Benichou, N., 1999, “Performance criteria used in fire safety design,” Autom. Constr., 8(4), 489-501. [95]Evans, D. D., 1995, “Ceiling jet flows,” SFPE Handbook of Fire Protection Engineering, 2, 2-32. [96]內政部消防署,2020,滅火器認可基準。 [97]Jeong, J. Y., Ryou, H. S., 2002. “A study on smoke movement in room fires with various pool fire location,” KSME Int. J., 16(11), 1485-1496. [98]Horvat, A., Sinai, Y., 2007. “Numerical simulation of backdraft phenomena,” Fire Saf. J., 42(3), 200-209. [99]Wang, T. Y., Tsai, K. C., 2021, “Effects of Time to Unactuate Air Conditioning on Fire Growth. Energies,” 14(11), 3100.
|