|
[1]C.S. Yin, J.H. Wu, J. Znou, D.H. Zhang, Z.J. Liu, X.D. Liu, L.Z. Liu, Z.J. Zhan, S. Garner, and Y.Q. Fu, “Enhancing the sensitivity of flexible acoustic wave ultraviolet photodetector with graphene-quantum-dots decorated ZnO nanowires,” Sensors and Actuators A: Physical, vol. 321, no. 112590, Apr. 2021. [2]S.J. Young , and Y.H. Liu, “High Response of Ultraviolet Photodetector Based on Al-Doped ZnO Nanosheet Structures,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 23, no. 5, Mar. 2017. [3]A.F. Abdulrahman, N.M. Abd-Alghafour, and S.M. Ahmed, “Optimization and characterization of SILAR synthesized ZnO nanorods for UV photodetector sensor,” Sensors and Actuators A: Physical, vol. 323, no. 112656, Jun. 2021. [4]C.C, Lin, Y.W. Chen, C.S. Hsiao, and S.Y. Chen, “Electrically responsive ZnO nanotubes for controlled release of biomolecules,” Ceramics International, vol. 43, no. 17, pp. 16042-10642, Aug. 2017. [5]D.Y. Guo, Y.L. Su, H.Z. Shi, P.G. Li, N. Zhao, J.H. Ye, S.L. Wang, A.P. Liu, Z.W Chen, C.R. Li, and W.H. Tang, “Self-Powered Ultraviolet Photodetector with Superhigh Photoresponsivity (3.05 A/W) Based on the GaN/Sn:Ga2O3 pn Junction,” Acs Nano, vol. 12, no. 12, pp. 12827-12835, Nov. 2018. [6]Y.H. Won, O. Cho, D.Y. Chung, T. Kim, H. Chung, H.Jang, J. Lee, D. Kim, and E. Jang, “Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes,” Nature, vol. 575, no. 7784, pp. 634, Nov. 2019. [7]Q.Y. Liu, P.P. Chen, Z. Xu, M.M. Chen, Y.A. Ding, K. Yue, and J. Xu, “A facile strategy to prepare porphyrin functionalized ZnS nanoparticles and their peroxidase-like catalytic activity for colorimetric sensor of hydrogen peroxide and glucose,” Sensors And Actuators B: Chemical, vol. 251, pp. 339-348, Nov. 2017. [8]F. Cao, S. Guo, H.Y. Ma, G.C. Yang, S.X. Yang, and J. Gong, “Highly sensitive nonenzymatic glucose sensor based on electrospun copper oxide-doped nickel oxide composite microfibers” Talanta, vol. 86, pp. 214-220, Oct. 2011. [9]T.T. Yang, B. Sun, L. Li, X. Wei, T.T. Guo, Z.M. Shi, F. Han, and L. Duan, “The mechanism of photocurrent enhancement of ZnO ultraviolet photodetector by reduced graphene oxide,” Current Applied Physics, vol. 18, no. 8, pp. 859-863, Aug. 2018. [10]S.J. Young, and T.H. Wang, “ZnO Nanorods Adsorbed with Photochemical Ag Nanoparticles for IOT and Field Electron Emission Application,” Journal of The Electrochemical Society, vol. 165, no. 8, pp. B3043-B3045, Jan. 2018. [11]X.P. Chen, C.K.Y. Wong, C.A. Yuan, and G.Q. Zhang, “Nanowire-based gas sensors,” Sensors And Actuators B: Chemical, vol. 177, pp. 178-195, Sep. 2013. [12]科技生活新聞網 “國際糖尿病聯盟:最新數據顯示全球目前有4.63億人患有糖尿病” 2019年11月15日. [13]聯合晚報 “糖尿病患者 每年增2.5萬人” 2020年1月13日. [14]王少君 “血糖感測器” 科學發展 2007年12月 420期. [15]E.H. El-Ads, A. Galal, and N.F. Atta, “Electrochemistry of glucose at gold nanoparticles modified graphite/SrPdO3 electrode - Towards a novel non-enzymatic glucose sensor,” Journal of Electroanalytical Chemistry, vol. 749, pp. 42-52, July. 2015. [16]W.B. Kim, S.H. Lee, M. Cho, and Y. Lee, “Facile and cost-effective CuS dendrite electrode for non-enzymatic glucose sensor,” Sensors and Actuators B: Chemical, vol. 249, pp. 161-167, Oct. 2017. [17]R. Wilson and A.P.F. Turner, “Review article Glucose oxidase: an ideal enzyme,” Biosensors and Bioelectron, 7 , pp. 165-185. 1991. [18]F. Cao, S. Guo, H.Y. Ma, G.C. Yang, S.X. Yang, and J. Gong, “Highly sensitive nonenzymatic glucose sensor based on electrospun copper oxide-doped nickel oxide composite microfibers,” Talanta, vol. 86, pp. 214-220, Oct. 2011. [19]A. E. Kitabchi, G. E. Umpierrez, J. M. Miles, and J. N. Fisher, "Hyperglycemic crises in adult patients with diabetes," Diabetes Care, vol. 32, no. 7, pp. 1335-43, 2009. [20]https://www.diabetesatlas.org/upload/resources/material/20200302_133351_IDFATLAS9e-final-web.pdf [21]蘇宏基"化學生物感測器講義"東華大學化學系. [22]S. Park, H. Boo, and T. D. Chung, "Electrochemical non-enzymatic glucose sensors," Anal Chim Acta, vol. 556, no. 1, pp. 46-57, Jan. 2006. [23]K. E. Toghill and R. G. Compton, "Electrochemical Non-enzymatic Glucose Sensors: A Perspective and an Evaluation," (in English), International Journal of Electrochemical Science, vol. 5, no. 9, pp. 1246-1301, Sep. 2010. [24]Z. Zhu, L. Garcia-Gancedo, A. J. Flewitt, H. Xie, F. Moussy, and W. I. Milne, "A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene," Sensors (Basel), vol. 12, no. 5, pp. 5996-6022, 2012. [25]P. D. Hale, T. Inagaki, H. I. Karan, Y. Okamoto, and T. A. Skotheim, "A new class of amperometric biosensor incorporating a polymeric electron-transfer mediator," Journal of the American Chemical Society, vol. 111, no. 9, pp. 3482-3484, 1989. [26]K. E. Toghill and R. G. Compton, Int. J. Electrochem. Sci.,2010, 5, 1246–1301. [27]S. Park, H. Boo, and T. D. Chung, "Electrochemical non-enzymatic glucose sensors," Anal Chim Acta, vol. 556, no. 1, pp. 46-57, Jan 18 2006. [28]M. M. Rahman, A. J. Ahammad, J. H. Jin, S. J. Ahn, and J. J. Lee, "A comprehensive review of glucose biosensors based on nanostructured metal-oxides," Sensors (Basel), vol. 10, no. 5, pp. 4855-86, 2010. [29]L. D. Burke, "Premonolayer Oxidation and Its Role in Electrocatalysis," Electrochimica Acta, vol. 39, no. 11-12, pp. 1841-1848, Aug 1994. [30]H. Zhu, L. Li, W. Zhou, Z. Shao, and X. Chen, "Advances in non-enzymatic glucose sensors based on metal oxides," Journal of Materials Chemistry B, vol. 4, no. 46, pp. 7333-7349, 2016. [31]Steckhan E., "Organic synthese with with electrochemically regenerable redox systems, " Topic in Current Chemistry, Vol.142, Steckhan E. eds, Springer-Verlag,Berlin Heidelberg, 1987. [32]M. E. Tess and J. A. Cox, "Chemical and biochemical sensors based on advances in materials chemistry," Journal of Pharmaceutical and Biomedical Analysis, vol. 19, no. 1-2, pp. 55-68, 1999. [33]P. T. K. W. R. Heineman, "Cyclic Voltammetry". [34]Wang, Analytical Electrochemistry, 2nd Edition. John Wiley & Sons, Inc.,New York. [35]F. Zhou, Weixuan Jing, Qiong Wu, Weizhuo Gao, Zhuangde Jiang, Jiafan Shi, Qibing Cui, "Effects of the surface morphologies of ZnO nanotube arrays on the performance of amperometric glucose sensors," Materials Science in Semiconductor Processing, vol. 56, pp. 137-144, 2016. [36]R. Wen, L. Wang, X. Wang, G.H. Yue, Y. Chen, and D.L. Peng, "Influence of substrate temperature on mechanical, optical and electrical properties of ZnO:Al films," Journal of Alloys and Compounds, vol. 508, no. 2, pp. 370-374, Oct. 2010. [37]M. Chen, Z. L. Pei, X. Wang, C. Sun, and L. S. Wen, "Structural, electrical, and optical properties of transparent conductive oxide ZnO:Al films prepared by dc magnetron reactive sputtering," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 19, no. 3, pp. 963-970, May. 2001. [38]V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M. E. V. Costa, et al., "Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature," Thin Solid Films, vol. 427, no. 1-2, pp. 401-405, Mar. 2003. [39]K. C. Park, D. Y. Ma, and K. H. Kim, "The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering," Thin Solid Films, vol. 305, no. 1-2, pp. 210-219, Aug. 1997. [40]P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes, "Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering," Applied Physics Letters, vol. 82, pp. 1117-1119, 2003. [41]S.-H. Jeong, B.-S. Kim, and B.-T. Lee, "Photoluminescence dependence of ZnO films grown on Si(100) by radio-frequency magnetron sputtering on the growth ambient," Applied Physics Letters, vol. 82, pp. 2625-2627, 2003. [42]E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M. F. Gonçalves, A. J. S. Marques, R. F. P. Martins, et al., "Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature," Applied Physics Letters, vol. 85, pp. 2541-2543, 2004. [43]P.C. Chang, Z.Y. Fan, D.W. Wang, W.Y. Tseng, W.A. Chiou, J. Hong, and J.G. Lu, “ZnO nanowires synthesized by vapor trapping CVD method,” Chemistry Of Materials, vol. 16, no. 24, pp. 5133-5137, Nov 2004. [44]Y. Tak and K. Yong, "Controlled Growth of Well-Aligned ZnO Nanorod Array Using a Novel Solution Method," Journal of Physical Chemistry B, vol. 109, no. 41, pp. 19263-19269, Oct. 2005. [45]H.Q. Le, S.J. Chua, Y.W. Koh, K.P. Loh, Z. Chen, C.V. Thompson, and E.A. Fitzgerald, “Growth of single crystal ZnO nanorods on GaN using an aqueous solution method,” Applied Pyhsics Letters, vol. 87, no. 10, Sep. 2005. [46]Z. Fan and J.G. Lu, “Zinc Oxide Nanostructures Synthesis and Properties,” 2005. [47]S. Baruah and J. Dutta, "Hydrothermal growth of ZnO nanostructures," Science and Technology of Advanced Materials, vol. 10, no. 1, Mar. 2009. [48]B. Liu and H. C. Zeng, "Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm," Journal of The American Chemical Society, vol. 125, no. 15, pp. 4430-4431, Apr. 2003. [49]H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, and D. Que, "Low Temperature Synthesis of Flowerlike ZnO Nanostructures by Cetyltrimethylammonium Bromide-Assisted Hydrothermal Process," Journal of Physical Chemistry B, vol. 108, no. 13,pp. 3955-3958, Apr. 2004. [50]K.H. Tam, C.K. Cheung, Y.H. Leung, A.B. Djuris, C.C. Ling, C.D. Beling, et al., “Defects in ZnO Nanorods Prepared by a Hydrothermal Method,” Journal of Physical Chemistry B, vol. 110, pp. 20865-20871, 2006. [51]K. Hassan and G.S. Chung, "Catalytically activated quantum-size Pt/Pd bimetallic core–shell nanoparticles decorated on ZnO nanorod clusters for accelerated hydrogen gas detection," Sensors and Actuators B: Chemical, vol. 239, pp. 824-833, Feb. 2017. [52]F. Fan, J. Zhang, J. Li, N. Zhang, R. Hong, X. Deng, et al., "Hydrogen sensing properties of Pt-Au bimetallic nanoparticles loaded on ZnO nanorods," Sensors and Actuators B: Chemical, vol. 241, pp. 895-903, Mar. 2017. [53]Field-emission scanning electron micros; National Chung Hsing University [54]M. Ahmad, L. Gan, C. Pan, and J. Zhu, "Controlled synthesis and methanol sensing capabilities of Pt-incorporated ZnO nanospheres," Electrochimica Acta, vol. 55, pp. 6885-6891, 2010. [55]H.Q. Le, S.J. Chua, Y.W. Koh, K.P. Loh, Z. Chen, C.V. Thompson, and E.A. Fitzgerald, “Growth of single crystal ZnO nanorods on GaN using an aqueous solution method,” Applied Pyhsics Letters, vol. 87, no. 10, Sep. 2005. [56]H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, and D. Que, “Low temperature synthesis of flower-like ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process,” J. Phys. Chem. B, vol. 108, 2004. [57]P.F. Carcia, R.S. McLean, M.H. Reilly, and G. Nunes,"Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering," Applied Physics Letters, vol. 82, no. 7, pp. 1117-1119, Feb. 2003. [58]S.-H. Jeong, B.-S. Kim, and B.-T. Lee, "Photoluminescence dependence of ZnO films grown on Si(100) by radio-frequency magnetron sputtering on the growth ambient," Applied Physics Letters, vol. 82, pp. 2625-2627, 2003. [59]S.J. Young and L.T. Lai, “Field emission properties of ZnO nanosheet grown on a Si substrate,” Microelectronic Engineering, vol. 148, pp. 40-43, 2015. [60]L. Yi-Hsing, Y. Sheng-Joue, J. Liang-Wen, and C. Shoou-Jim, “Enhanced Field Emission Properties of Ga-Doped ZnO Nanosheets by using an Aqueous Solution at Room Temperature,” IEEE Transactions on Electron Devices, vol. 61, pp. 4192-4196, 2014. [61]B. Khalfallah, F. Chaabouni, G. Schmerber, A. Dinia, and M. Abaab, "Investigation of physico-chemical properties of conductive Ga-doped ZnO thin films deposited on glass and silicon wafers by RF magnetron sputtering," Journal of Materials Science: Materials in Electronics, vol. 28, no. 1, pp. 75-85, Jan. 2017. [62]A.Jilani, J. Iqbal, S.Rafique, M.S. Abdel-wahab, Y. Jamil and A.A. Ai-Ghamdi, “Morphological, optical and X-ray photoelectron chemical state shift investigations of ZnO thin films,” Optik, vol. 127, no. 16, pp. 6358-6365, 2016. [63]Y.K. Hsu, S.Y. Fu, M.H. Chen, Y.C. Chen and Y.G. Lin, “Facile Synthesis of Pt Nanoparticles/ZnO Nanorod Arrays for Photoelectrochemical Water Splitting,” Electrochimica Acta, vol. 120, pp. 1-5, Feb. 2014. [64]M.Arifin, L.Roza, V.Fauzia, “Bayberry-like Pt nanoparticle decorated ZnO nanorods for the photocatalytic application,” Results in Physics, vol. 15, Dec. 2019. [65]G.X. Zhonga, W.X. Zhanga, Y.-M. Suna, Y.Q. Wei,Y. Lei,H.P. Penga, A.L. Liua,Y.Z. Chenb and X.H. Lina, “A nonenzymatic amperometric glucose sensor based on three dimensional nanostructure gold electrode,” Sensors and Actuators B: Chemical, vol. 212, pp. 72-77, June. 2015. [66]Y.H. Wei, C.K. Hsieh and F.G. Tseng, “Highly-Sensitive Non-Enzymatic Glucose Sensor via Nano Platinum Crystals Fabricated by Phase-Controlled Electrochemical Deposition,” Journal of the Electrochemical Society, vol. 165, no. 2, pp. B48-B54, 2018. [67]C.L.Hsu, J.H. Lin, D.X. Hsu, S.H. Wang, S.Y. Lin and T.J. Hsueh, “Enhanced non-enzymatic glucose biosensor of ZnO nanowires via decorated Pt nanoparticles and illuminated with UV/green light emitting diodes,” Sensors and Actuators B: Chemical, vol. 238, pp. 150-159, Jan. 2017. [68]L.T. Hao, K.G. Sun and S.H. Hur, “Highly sensitive non-enzymatic glucose sensor based on Pt nanoparticle decorated graphene oxide hydrogel,” Sensors and Actuators B: Chemical, vol. 210, pp. 618-623, Apr. 2015. [69]S. Badhulika, R.K. Paul, Rahesh, T. Terse, A. Mulchandani, “Nonenzymatic Glucose Sensor Based on Platinum Nanoflowers Decorated Multiwalled Carbon Nanotubes-Graphene Hybrid Electrode,” Electroanalysis, vol. 26, pp. 103-108, Jan. 2014. [70]C. Su, C. Zhang, G.Q. Lu, C.N. Ma, “Nonenzymatic Electrochemical Glucose Sensor Based on Pt Nanoparticles/Mesoporous Carbon Matrix,” Electroanalysis, vol. 24, pp. 1901-1905. Aug. 2010. [71]R.S. Li, X. Deng, L.F. Xia, “Non‑enzymatic sensor for determination of glucose based on PtNi nanoparticles decorated graphene,” Scientific Reports, vol. 10, Oct. 2020. [72]L. Wang, X.P. Lu, C.J. Wen, Y.Z. Xie, L.F. Miao, S.H. Chen, H.B. Li, P. Li, Y.H. Song, “One-step synthesis of Pt–NiO nanoplate array/reduced graphene oxide nanocomposites for nonenzymatic glucose sensing,” Journal of Materials Chemistry A, vol. 3, pp. 608-616, 2015. [73]D.Pletcher, “Electrocatalysis: present and future,” Journal of Applied Physics, pp.403-415. 1984. [74]K.E. Toghill and R.G. Compton, “Electrochemical Non-enzymatic Glucose Sensors: A Perspective and an Evaluation,” International Journal of Electrochemistry, pp. 1246-1301, Sep. 2010.
|