|
1.Mirunalini, S. and M. Krishnaveni, Therapeutic potential of Phyllanthus emblica (amla): the ayurvedic wonder. Journal of basic and clinical physiology and pharmacology, 2010. 21(1): p. 93-105. 2.Liu, X., et al., Antioxidant activity of methanolic extract of emblica fruit (Phyllanthus emblica L.) from six regions in China. Journal of food composition and Analysis, 2008. 21(3): p. 219-228. 3.Shishoo, C., et al., Determination of vitamin C content of Phyllanthus emblica and chyavanprash. Indian journal of pharmaceutical sciences, 1997. 59(5): p. 268. 4.Sripanidkulchai, B. and J. Junlatat, Bioactivities of alcohol based extracts of Phyllanthus emblica branches: antioxidation, antimelanogenesis and anti-inflammation. Journal of natural medicines, 2014. 68(3): p. 615-622. 5.Charoenteeraboon, J., et al., Antioxidant activities of the standardized water extract from fruit of Phyllanthus emblica Linn. Sonklanakarin Journal of Science and Technology, 2010. 32(6): p. 599. 6.Xia, Q., et al., Ethnopharmacology of Phyllanthus emblica L. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China journal of Chinese materia medica, 1997. 22(9): p. 515-8, 525, 574. 7.Krishnaveni, M., et al., Antidiabetic and antihyperlipidemic properties of Phyllanthus emblica Linn.(Euphorbiaceae) on streptozotocin induced diabetic rats. Pak J Nutr, 2010. 9(1): p. 43-51. 8.Kim, K.-H., E. Kabir, and S. Kabir, A review on the human health impact of airborne particulate matter. Environment International, 2015. 74: p. 136-143. 9.Apte, J.S., et al., Addressing global mortality from ambient PM2. 5. Environmental science & technology, 2015. 49(13): p. 8057-8066. 10.Organization, W.H., Air quality guidelines: global update 2005: particulate matter, ozone, nitrogen dioxide, and sulfur dioxide. 2006: World Health Organization. 11.Li, R., R. Zhou, and J. Zhang, Function of PM2. 5 in the pathogenesis of lung cancer and chronic airway inflammatory diseases. Oncology letters, 2018. 15(5): p. 7506-7514. 12.Pauwels, R.A. and K.F. Rabe, Burden and clinical features of chronic obstructive pulmonary disease (COPD). The Lancet, 2004. 364(9434): p. 613-620. 13.Spruit, M.A., et al., Fatigue in COPD: an important yet ignored symptom. The lancet respiratory medicine, 2017. 5(7): p. 542-544. 14.Fischer, B.M., E. Pavlisko, and J.A. Voynow, Pathogenic triad in COPD: oxidative stress, protease-antiprotease imbalance, and inflammation. International journal of chronic obstructive pulmonary disease, 2011. 6: p. 413-421. 15.Hogg, J.C. and W. Timens, The Pathology of Chronic Obstructive Pulmonary Disease. Annual Review of Pathology: Mechanisms of Disease, 2009. 4(1): p. 435-459. 16.Miravitlles, M., et al., Spanish COPD guidelines (GesEPOC) 2021: Updated pharmacological treatment of stable COPD. Archivos de Bronconeumología (English Edition), 2021. 17.Ghosal, S., Active constituents of Emblica officinalis: Part I. The chemistry and antioxidative effects of two new hydrolysable tannins, Emblicanin A and B. Indian J. Chem., 1996. 35: p. 941-948. 18.Barthakur, N.N. and N.P. Arnold, Chemical analysis of the emblic (Phyllanthus emblica L.) and its potential as a food source. Scientia Horticulturae, 1991. 47(1): p. 99-105. 19.Ahmad, B., et al., Phyllanthus emblica: A comprehensive review of its therapeutic benefits. South African Journal of Botany, 2021. 138: p. 278-310. 20.Sriwatcharakul, S., Evaluation of bioactivities of Phyllanthus emblica seed. Energy Reports, 2020. 6: p. 442-447. 21.Li, W., et al., HPLC fingerprint analysis of Phyllanthus emblica ethanol extract and their antioxidant and anti-inflammatory properties. Journal of Ethnopharmacology, 2020. 254: p. 112740. 22.Tahir, I., et al., Evaluation of phytochemicals, antioxidant activity and amelioration of pulmonary fibrosis with Phyllanthus emblica leaves. BMC Complementary and Alternative Medicine, 2016. 16(1): p. 406. 23.Li, W., et al., Bioactivity‐guided isolation of anti‐inflammatory components from Phyllanthus emblica. Food science & nutrition, 2020. 8(6): p. 2670-2679. 24.Wang, H.M.-D., et al., Inhibition of LPS-induced oxidative damages and potential anti-inflammatory effects of Phyllanthus emblica extract via down-regulating NF-κB, COX-2, and iNOS in RAW 264.7 Cells. Antioxidants, 2019. 8(8): p. 270. 25.Chatterjee, A., S. Chattopadhyay, and S.K. Bandyopadhyay, Biphasic effect of Phyllanthus emblica L. extract on NSAID-induced ulcer: an antioxidative trail weaved with immunomodulatory effect. Evidence-Based Complementary and Alternative Medicine, 2010. 2011. 26.Kunchana, K., et al., Potential Use of Amla (Phyllanthus emblica L.) Fruit Extract to Protect Skin Keratinocytes from Inflammation and Apoptosis after UVB Irradiation. Antioxidants, 2021. 10(5): p. 703. 27.Ngamkitidechakul, C., et al., Antitumour effects of Phyllanthus emblica L.: induction of cancer cell apoptosis and inhibition of in vivo tumour promotion and in vitro invasion of human cancer cells. Phytotherapy research, 2010. 24(9): p. 1405-1413. 28.Sultana, S., S. Ahmed, and T. Jahangir, Emblica officinalis and hepatocarcinogenesis: A chemopreventive study in Wistar rats. Journal of Ethnopharmacology, 2008. 118(1): p. 1-6. 29.Wang, C.-c., et al., Anti-inflammatory effects of Phyllanthus emblica L on benzopyrene-induced precancerous lung lesion by regulating the IL-1β/miR-101/Lin28B signaling pathway. Integrative cancer therapies, 2017. 16(4): p. 505-515. 30.Wang, Y.-C., et al., Inhibitions of melanogenesis via Phyllanthus emblica fruit extract powder in B16F10 cells. Food Bioscience, 2019. 28: p. 177-182. 31.Chaikul, P., et al., Phyllanthus emblica L. (amla) branch: A safe and effective ingredient against skin aging. Journal of Traditional and Complementary Medicine, 2021. 32.Srinivasan, P., et al., Anti-diabetic activity of quercetin extracted from Phyllanthus emblica L. fruit: In silico and in vivo approaches. Journal of Pharmaceutical Analysis, 2018. 8(2): p. 109-118. 33.Balusamy, S.R., et al., Phyllanthus emblica fruit extract attenuates lipid metabolism in 3T3-L1 adipocytes via activating apoptosis mediated cell death. Phytomedicine, 2020. 66: p. 153129. 34.Uddin, M.S., et al., Exploring the effect of Phyllanthus emblica L. on cognitive performance, brain antioxidant markers and acetylcholinesterase activity in rats: promising natural gift for the mitigation of Alzheimer's disease. Annals of Neurosciences, 2016. 23(4): p. 218-229. 35.Dinesh, M., et al., Phyllanthus emblica seed extract mediated synthesis of PdNPs against antibacterial, heamolytic and cytotoxic studies. Journal of Photochemistry and Photobiology B: Biology, 2017. 167: p. 64-71. 36.Renuka, R., et al., Biosynthesis of silver nanoparticles using phyllanthus emblica fruit extract for antimicrobial application. Biocatalysis and Agricultural Biotechnology, 2020. 24: p. 101567. 37.Brook, R.D., D.E. Newby, and S. Rajagopalan, Air pollution and cardiometabolic disease: an update and call for clinical trials. American journal of hypertension, 2018. 31(1): p. 1-10. 38.Brook, R.D., et al., Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation, 2010. 121(21): p. 2331-2378. 39.Baldauf, R.W., et al., Ultrafine Particle Metrics and Research Considerations: Review of the 2015 UFP Workshop. International Journal of Environmental Research and Public Health, 2016. 13(11): p. 1054. 40.Guo, C., et al., Effect of long-term exposure to fine particulate matter on lung function decline and risk of chronic obstructive pulmonary disease in Taiwan: a longitudinal, cohort study. The Lancet Planetary Health, 2018. 2(3): p. e114-e125. 41.Ji, X., Y. Yao, and X. Long, What causes PM2.5 pollution? Cross-economy empirical analysis from socioeconomic perspective. Energy Policy, 2018. 119: p. 458-472. 42.Yang, S., D. Fang, and B. Chen, Human health impact and economic effect for PM2.5 exposure in typical cities. Applied Energy, 2019. 249: p. 316-325. 43.Lelieveld, J., et al., The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 2015. 525(7569): p. 367-371. 44.Li, Q., et al., The preferential accumulation of heavy metals in different tissues following frequent respiratory exposure to PM2.5 in rats. Scientific Reports, 2015. 5(1): p. 16936. 45.Monn, C. and S. Becker, Cytotoxicity and Induction of Proinflammatory Cytokines from Human Monocytes Exposed to Fine (PM2.5) and Coarse Particles (PM10–2.5) in Outdoor and Indoor Air. Toxicology and Applied Pharmacology, 1999. 155(3): p. 245-252. 46.Riva, D., et al., Low dose of fine particulate matter (PM2. 5) can induce acute oxidative stress, inflammation and pulmonary impairment in healthy mice. Inhalation toxicology, 2011. 23(5): p. 257-267. 47.Mehta, M., et al., Particulate matter inhibits DNA repair and enhances mutagenesis. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2008. 657(2): p. 116-121. 48.Gualtieri, M., et al., Differences in cytotoxicity versus pro-inflammatory potency of different PM fractions in human epithelial lung cells. Toxicology in Vitro, 2010. 24(1): p. 29-39. 49.Rabe, K.F., et al., Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med, 2007. 176(6): p. 532-55. 50.Schieber, M. and Navdeep S. Chandel, ROS Function in Redox Signaling and Oxidative Stress. Current Biology, 2014. 24(10): p. R453-R462. 51.Kirkham, P.A. and P.J. Barnes, Oxidative Stress in COPD. Chest, 2013. 144(1): p. 266-273. 52.Wang, Y., et al., Role of inflammatory cells in airway remodeling in COPD. Int J Chron Obstruct Pulmon Dis, 2018. 13: p. 3341-3348. 53.Louhelainen, N., et al., Persistence of oxidant and protease burden in the airways after smoking cessation. BMC Pulmonary Medicine, 2009. 9(1): p. 25. 54.Stockley, R., Neutrophils and protease/antiprotease imbalance. American journal of respiratory and critical care medicine, 1999. 160(supplement_1): p. S49-S52. 55.Craig, T.J. and M.P. Henao, Advances in managing COPD related to α1‐antitrypsin deficiency: An under‐recognized genetic disorder. Allergy, 2018. 73(11): p. 2110-2121. 56.Bergin, D.A., et al., α-1 Antitrypsin regulates human neutrophil chemotaxis induced by soluble immune complexes and IL-8. The Journal of clinical investigation, 2010. 120(12): p. 4236-4250. 57.Lomas, D.A., Does Protease–Antiprotease Imbalance Explain Chronic Obstructive Pulmonary Disease? Annals of the American Thoracic Society, 2016. 13(Supplement 2): p. S130-S137. 58.Kelly, E., et al., Alpha-1 antitrypsin deficiency. Respiratory Medicine CME, 2011. 4(1): p. 1-8. 59.Esquinas, C., et al., Gene and miRNA expression profiles in PBMCs from patients with severe and mild emphysema and PiZZ alpha1-antitrypsin deficiency. International journal of chronic obstructive pulmonary disease, 2017. 12: p. 3381-3390. 60.Janciauskiene, S.M., et al., The discovery of α1-antitrypsin and its role in health and disease. Respiratory Medicine, 2011. 105(8): p. 1129-1139. 61.Yao, H. and I. Rahman, Current concepts on the role of inflammation in COPD and lung cancer. Current Opinion in Pharmacology, 2009. 9(4): p. 375-383. 62.Caramori, G. and I. Adcock, Pharmacology of airway inflammation in asthma and COPD. Pulmonary Pharmacology & Therapeutics, 2003. 16(5): p. 247-277. 63.Singleton, V.L., R. Orthofer, and R.M. Lamuela-Raventós, [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in enzymology, 1999. 299: p. 152-178. 64.Nagy, M. and D. Grancai, Colorimetric determination of flavanones in propolis. Pharmazie, 1996. 51(2): p. 100-101. 65.Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976. 72(1): p. 248-254. 66.Nagai, T., et al., Antioxidant properties of enzymatic hydrolysates from royal jelly. Journal of medicinal food, 2006. 9(3): p. 363-367. 67.Benzie, I.F. and J.J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry, 1996. 239(1): p. 70-76. 68.Oyaizu, M., Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese journal of nutrition and dietetics, 1986. 44(6): p. 307-315. 69.Patel, R.K., V.R. Patel, and M.G. Patel, Development and validation of a RP-HPLC method for the simultaneous determination of Embelin, Rottlerin and Ellagic acid in Vidangadi churna. Journal of Pharmaceutical Analysis, 2012. 2(5): p. 366-371. 70.Kumar, G.S., et al., Free and bound phenolic antioxidants in amla (Emblica officinalis) and turmeric (Curcuma longa). Journal of Food Composition and Analysis, 2006. 19(5): p. 446-452. 71.Perron, N.R. and J.L. Brumaghim, A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell biochemistry and biophysics, 2009. 53(2): p. 75-100. 72.Proestos, C., et al., RP-HPLC analysis of the phenolic compounds of plant extracts. Investigation of their antioxidant capacity and antimicrobial activity. Journal of agricultural and food chemistry, 2005. 53(4): p. 1190-1195. 73.Pereira, J.A., et al., Table olives from Portugal: phenolic compounds, antioxidant potential, and antimicrobial activity. Journal of Agricultural and Food Chemistry, 2006. 54(22): p. 8425-8431. 74.Liu, X., et al., Immunomodulatory and anticancer activities of phenolics from emblica fruit (Phyllanthus emblica L.). Food Chemistry, 2012. 131(2): p. 685-690. 75.Luo, W., et al., Antioxidant and antiproliferative capacities of phenolics purified from Phyllanthus emblica L. fruit. Food Chemistry, 2011. 126(1): p. 277-282. 76.Panche, A., A. Diwan, and S. Chandra, Flavonoids: an overview. Journal of nutritional science, 2016. 5. 77.Benavente-Garcia, O. and J. Castillo, Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. Journal of agricultural and food chemistry, 2008. 56(15): p. 6185-6205. 78.Rice-Evans, C.A., N.J. Miller, and G. Paganga, Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free radical biology and medicine, 1996. 20(7): p. 933-956. 79.Van Acker, S.A., et al., Structural aspects of antioxidant activity of flavonoids. Free Radical Biology and Medicine, 1996. 20(3): p. 331-342. 80.Ruangchakpet, A. and T. Sajjaanantakul, Effect of browning on total phenolic, flavonoid content and antioxidant activity in Indian gooseberry (Phyllanthus emblica Linn.). Agriculture and Natural Resources, 2007. 41(5): p. 331-337. 81.Anila, L. and N. Vijayalakshmi, Flavonoids from Emblica officinalis and Mangifera indica—effectiveness for dyslipidemia. Journal of Ethnopharmacology, 2002. 79(1): p. 81-87. 82.Zhao, T., et al., Anticancer properties of Phyllanthus emblica (Indian gooseberry). Oxidative medicine and cellular longevity, 2015. 2015. 83.Fitriansyah, S.N., et al., Correlation of total phenolic, flavonoid and carotenoid content of Phyllanthus emblica extract from Bandung with DPPH scavenging activities. Pharmacognosy Journal, 2018. 10(3). 84.Yang, B. and P. Liu, Composition and Biological Activities of Hydrolyzable Tannins of Fruits of Phyllanthus emblica. Journal of Agricultural and Food Chemistry, 2014. 62(3): p. 529-541. 85.INOUE, M., et al., Selective induction of cell death in cancer cells by gallic acid. Biological and Pharmaceutical Bulletin, 1995. 18(11): p. 1526-1530. 86.Kim, S.-H., et al., Gallic acid inhibits histamine release and pro-inflammatory cytokine production in mast cells. Toxicological Sciences, 2006. 91(1): p. 123-131. 87.Ohno, Y., et al., Induction of apoptosis by gallic acid in lung cancer cells. Anti-cancer drugs, 1999. 10(9): p. 845-851. 88.Díaz-Gómez, R., et al., Comparative antibacterial effect of gallic acid and catechin against Helicobacter pylori. LWT-Food Science and Technology, 2013. 54(2): p. 331-335. 89.Kang, J., et al., Antibacterial activity of gallic acid against Shigella flexneri and its effect on biofilm formation by repressing mdoH gene expression. Food Control, 2018. 94: p. 147-154. 90.Adefegha, S.A., et al., Antioxidant and antidiabetic effects of gallic and protocatechuic acids: a structure–function perspective. Comparative clinical pathology, 2015. 24(6): p. 1579-1585. 91.Kim, Y.-J., Antimelanogenic and antioxidant properties of gallic acid. Biological and Pharmaceutical Bulletin, 2007. 30(6): p. 1052-1055. 92.Dludla, P.V., et al., Inflammation and oxidative stress in an obese state and the protective effects of gallic acid. Nutrients, 2019. 11(1): p. 23. 93.Ho, H.-H., et al., Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Toxicology and Applied Pharmacology, 2013. 266(1): p. 76-85. 94.Chatterjee, A., et al., Gallic acid enriched fraction of Phyllanthus emblica potentiates indomethacin-induced gastric ulcer healing via e-NOS-dependent pathway. Evidence-Based Complementary and Alternative Medicine, 2012. 2012. 95.Huang, C.-Z., et al., The hepatoprotective effect of Phyllanthus emblica L. fruit on high fat diet-induced non-alcoholic fatty liver disease (NAFLD) in SD rats. Food & function, 2017. 8(2): p. 842-850. 96.Tasanarong, A., S. Kongkham, and A. Itharat, Antioxidant effect of Phyllanthus emblica extract prevents contrast-induced acute kidney injury. BMC Complementary and Alternative Medicine, 2014. 14(1): p. 1-11. 97.Derosa, G., P. Maffioli, and A. Sahebkar, Ellagic acid and its role in chronic diseases. Anti-inflammatory Nutraceuticals and Chronic Diseases, 2016: p. 473-479. 98.Ríos, J.-L., et al., A pharmacological update of ellagic acid. Planta medica, 2018. 84(15): p. 1068-1093. 99.Priyadarsini, K.I., et al., Free radical studies of ellagic acid, a natural phenolic antioxidant. Journal of agricultural and food chemistry, 2002. 50(7): p. 2200-2206. 100.Kilic, I., Y. Yeşiloğlu, and Y. Bayrak, Spectroscopic studies on the antioxidant activity of ellagic acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014. 130: p. 447-452. 101.Marín, M., et al., Intestinal anti-inflammatory activity of ellagic acid in the acute and chronic dextrane sulfate sodium models of mice colitis. J Ethnopharmacol, 2013. 150(3): p. 925-34. 102.Han, D.H., M.J. Lee, and J.H. Kim, Antioxidant and apoptosis-inducing activities of ellagic acid. Anticancer research, 2006. 26(5A): p. 3601-3606. 103.Ceci, C., et al., Experimental evidence of the antitumor, antimetastatic and antiangiogenic activity of ellagic acid. Nutrients, 2018. 10(11): p. 1756. 104.Wang, Y., et al., Ellagic acid exerts antitumor effects via the PI3K signaling pathway in endometrial cancer. Journal of Cancer, 2019. 10(15): p. 3303. 105.Wang, N., et al., Ellagic acid, a phenolic compound, exerts anti-angiogenesis effects via VEGFR-2 signaling pathway in breast cancer. Breast cancer research and treatment, 2012. 134(3): p. 943-955. 106.Vanella, L., et al., Effects of ellagic acid on angiogenic factors in prostate cancer cells. Cancers, 2013. 5(2): p. 726-738. 107.Afifi, N.A., M.A. Ibrahim, and M.K. Galal, Hepatoprotective influence of quercetin and ellagic acid on thioacetamide-induced hepatotoxicity in rats. Canadian Journal of Physiology and Pharmacology, 2018. 96(6): p. 624-629. 108.Luo, W., et al., Identification of bioactive compounds in Phyllenthus emblica L. fruit and their free radical scavenging activities. Food Chemistry, 2009. 114(2): p. 499-504. 109.Fatima, N., et al., Ellagic acid in Emblica officinalis exerts anti-diabetic activity through the action on β-cells of pancreas. European journal of nutrition, 2017. 56(2): p. 591-601. 110.Sridhar, K. and A.L. Charles, In vitro antioxidant activity of Kyoho grape extracts in DPPH and ABTS assays: Estimation methods for EC50 using advanced statistical programs. Food Chemistry, 2019. 275: p. 41-49. 111.McCord, J.M. and I. Fridovich, Superoxide Dismutase: AN ENZYMIC FUNCTION FOR ERYTHROCUPREIN (HEMOCUPREIN). Journal of Biological Chemistry, 1969. 244(22): p. 6049-6055. 112.Bowler, C., et al., Superoxide dismutase in plants. Critical Reviews in Plant Sciences, 1994. 13(3): p. 199-218. 113.Ighodaro, O.M. and O.A. Akinloye, First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 2018. 54(4): p. 287-293. 114.Bafana, A., et al., The basic and applied aspects of superoxide dismutase. Journal of Molecular Catalysis B: Enzymatic, 2011. 68(2): p. 129-138. 115.Chen, Z., R. Bertin, and G. Froldi, EC50 estimation of antioxidant activity in DPPH assay using several statistical programs. Food Chemistry, 2013. 138(1): p. 414-420. 116.Mishra, K., H. Ojha, and N.K. Chaudhury, Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Chemistry, 2012. 130(4): p. 1036-1043. 117.Tahir, I., et al., Evaluation of phytochemicals, antioxidant activity and amelioration of pulmonary fibrosis with Phyllanthus emblica leaves. BMC complementary and alternative medicine, 2016. 16(1): p. 1-12. 118.Chigurupati, S., Antioxidant and antidiabetic properties of Phyllanthus acidus (L.) Skeels ethanolic seed extract. International Food Research Journal, 2020. 27(4): p. 775-782. 119.Benzie, I.F.F. and J.J. Strain, The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry, 1996. 239(1): p. 70-76. 120.Thaipong, K., et al., Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 2006. 19(6): p. 669-675. 121.Ghafar, M., et al., Flavonoid, hesperidine, total phenolic contents and antioxidant activities from Citrus species. African Journal of Biotechnology, 2010. 9(3). 122.Chularojmontri, L., M. Suwatronnakorn, and S.K. Wattanapitayakul, Phyllanthus emblica L. enhances human umbilical vein endothelial wound healing and sprouting. Evidence-Based Complementary and Alternative Medicine, 2013. 2013. 123.Luqman, S. and R. Kumar, Correlation between scavenging property and antioxidant activity in the extracts of Emblica officinalis Gaertn., syn. Phyllanthus emblica L. Fruit. Annals of Phytomedicine, 2012. 1(1): p. 54-61. 124.Saha, S. and R.J. Verma, Antioxidant activity of polyphenolic extract of Phyllanthus emblica against lead acetate induced oxidative stress. Toxicology and Environmental Health Sciences, 2015. 7(1): p. 82-90. 125.Brat, D.J., A.C. Bellail, and E.G. Van Meir, The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro-oncology, 2005. 7(2): p. 122-133. 126.Harada, A., et al., Essential involvement of interleukin‐8 (IL‐8) in acute inflammation. Journal of leukocyte biology, 1994. 56(5): p. 559-564. 127.de Boer, W.I., et al., Monocyte chemoattractant protein 1, interleukin 8, and chronic airways inflammation in COPD. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, 2000. 190(5): p. 619-626. 128.Waugh, D.J. and C. Wilson, The interleukin-8 pathway in cancer. Clinical cancer research, 2008. 14(21): p. 6735-6741. 129.Muthuraman, A., S. Sood, and S.K. Singla, The antiinflammatory potential of phenolic compounds from Emblica officinalis L. in rat. Inflammopharmacology, 2011. 19(6): p. 327-334. 130.Almatroodi, S.A., et al., Amla (Emblica officinalis): Role in health management via controlling various biological activities. Gene Reports, 2020: p. 100820. 131.Borde, V., P. Pangrikar, and S. Tekale, Gallic acid in Ayurvedic herbs and formulations. Recent Research in Science and Technology, 2011. 3(7). 132.Pozharitskaya, O.N., et al., Separation and evaluation of free radical‐scavenging activity of phenol components of Emblica officinalis extract by using an HPTLC–DPPH• method. Journal of separation science, 2007. 30(9): p. 1250-1254.
|