一、中文部分
1. 林宜萱 民101,財經領域情緒辭典之建置與其有效性之驗證-以財經新
聞為元件,國立台灣大學會計學研究所碩士論文
2. 蔡文翊 民96,小世界社會網絡演化模型:階段性需求於社交網絡拓樸動態的影響,國立交通大學資訊科學與工程研究所碩士論文3. 徐鈺瀅 民97,改良有界信心模型探討大眾媒體與小眾媒體對於意見動態的影響,國立交通大學資訊科學與工程研究所碩士論文4. 高嘉宏 民 99,輿論溝通對爭議性技術/觀念之擴散動態與過程的影響及交互作用,國立交通大學多媒體工程研究所碩士論文5. 謝昀容 民 108,整合輿論動態模型和創新擴散模型探討叫好不叫座現象,私立長庚大學資訊工程學系碩士論文6. 吳昱萱 民106,股價波動與財務預警-數據分析觀點,國立政治大學會計學系碩士論文7. 胡育誠 民108,應用新聞情緒指標結合隨機森林演算法預測股價漲跌趨勢,國立高雄科技大學金融資訊系碩士論文 二、英文部分
1. Tetlock, P. C. (2007). Giving content to investor sentiment: The role of media in the stock market. The Journal of finance, 62(3), 1139-1168.
2. Barberis, N., & Thaler, R. (2005). A survey of behavioral finance (pp. 1-76). Princeton University Press.
3. Rogers, E. M. (2004). A prospective and retrospective look at the diffusion model. Journal of health communication, 9(S1), 13-19.
4. Hegselmann, R., & Krause, U. (2002). Opinion dynamics and bounded confidence models, analysis, and simulation. Journal of artificial societies and social simulation, 5(3).
5. Galam, S. (1990). Social paradoxes of majority rule voting and renormalization group. Journal of Statistical Physics, 61(3-4), 943-951.
6. Iacobucci, D. (1996). Network models of the diffusion of innovations. Journal of Marketing, 60(3), 134.
7. Brown, J. J., & Reingen, P. H. (1987). Social ties and word-of-mouth referral behavior. Journal of Consumer research, 14(3), 350-362.
8. Oliver, P., Marwell, G., & Teixeira, R. (1985). A theory of the critical mass. I. Interdependence, group heterogeneity, and the production of collective action. American journal of Sociology, 91(3), 522-556.
9. Katz, M. L., & Shapiro, C. (1985). Network externalities, competition, and compatibility. The American economic review, 75(3), 424-440.
10. Millar, R. (1997). Science education for democracy: What can the school curriculum achieve?. na.
11. Banerjee, A., Chandrasekhar, A. G., Duflo, E., & Jackson, M. O. (2013). The diffusion of microfinance. Science, 341(6144).
12. Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis lectures on human language technologies, 5(1), 1-167.
13. Kerr, P. A., & Moy, P. (2002). Newspaper coverage of fundamentalist Christians, 1980–2000. Journalism & Mass Communication Quarterly, 79(1), 54-72.
14. Ferguson, N. J., Philip, D., Lam, H., & Guo, J. M. (2015). Media content and stock returns: The predictive power of press. Multinational Finance Journal, 19(1), 1-31.
15. Hanley, K. W., & Hoberg, G. (2010). The information content of IPO prospectuses. The Review of Financial Studies, 23(7), 2821-2864.
16. Irfan, R., King, C. K., Grages, D., Ewen, S., Khan, S. U., Madani, S. A., ... & Li, H. (2015). A survey on text mining in social networks. The Knowledge Engineering Review, 30(2), 157-170.
17. McLean, R. D., & Zhao, M. (2014). The business cycle, investor sentiment, and costly external finance. The Journal of Finance, 69(3), 1377-1409.
18. Friedkin, N. E., & Johnsen, E. C. (1990). Social influence and opinions. Journal of Mathematical Sociology, 15(3-4), 193-206.
19. Q Quattrociocchi, W., Caldarelli, G., & Scala, A. (2014). Opinion dynamics on interacting networks: media competition and social influence. Scientific reports, 4(1), 1-7.
20. Sousa, A. O. (2004). Bounded confidence model on a still growing scale-free network. arXiv preprint cond-mat/0406766.
21. Rai, V., & Robinson, S. A. (2015). Agent-based modeling of energy technology adoption: empirical integration of social, behavioral, economic, and environmental factors. Environmental Modelling & Software, 70, 163-177.
22. Fortunato, S., Latora, V., Pluchino, A., & Rapisarda, A. (2005). Vector opinion dynamics in a bounded confidence consensus model. International Journal of Modern Physics C, 16(10), 1535-1551.
23. Pluchino, A., Latora, V., & Rapisarda, A. (2006). Compromise and synchronization in opinion dynamics. The European Physical Journal B-Condensed Matter and Complex Systems, 50(1), 169-176.
24. Deffuant, G., Amblard, F., Weisbuch, G., & Faure, T. (2002). How can extremism prevail? A study based on the relative agreement interaction model. Journal of artificial societies and social simulation, 5(4).
25. Watts, D. J. (2004). Six degrees: The science of a connected age. WW Norton & Company.
26. Lu,Y.C., Shen, C.H., & Wei,Y.C. (2013). Revisiting early warning signals of corporate credit default using linguistic analysis. Pacific-Basin Finance Journal, 24, 1-21.
27. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’networks. nature, 393(6684), 440-442.
28. Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. science, 286(5439), 509-512.
29. Etesami, S. R., & Başar, T. (2015). Game-theoretic analysis of the Hegselmann- Krause model for opinion dynamics in finite dimensions. IEEE Transactions on Automatic Control, 60(7), 1886-1897.
30. Barberis, N., & Thaler, R. (2005). A survey of behavioral finance (pp. 1-76). Princeton University Press.