Lorenz, E. N., 1963, “Deterministic Non-Periods Flow”, Journal of the Atmospheric Sciences, Vol. 20, pp. 130-141.
He ́non, M., 1976, “A two-dimensional mapping with a strange attractor”, Communications in Mathematical Physics, Vol. 50, pp.69-77.
Sprott, J. C., 1997, “Simplest dissipative chaotic flow”, Physics Letters A, Vol. 228, pp.271-274.
Gen, G. and Ueta, T., 1999, “Yet another chaotic attractor”, Journal of Bifurcation and Chaos, Vol. 09, pp. 1465-1466.
Lu ̈, J., Chen, G. and Zhang, S., 2002, “The compound structure of a new chaotic attractor”, Chaos, Solitons & Fractals, Vol. 14, pp. 669-672.
Lu ̈, J., Chen, G., Cheng, D. and Celikovsky, S., 2002, “Bridge the gap between the Lorenz system and the Chen system”, International Journal of Bifurcation and Chaos, Vol. 12, pp. 2917-2926.
Wang, X. Y. and Zhao, G. B., 2010, “Hyperchaos generated from the unified chaotic system and its control”, International Journal of Bifurcation and Chaos, Vol. 24, pp. 4619-4637.
梁偉倫,2017,新統一超混沌系統之電路實現與同步控制。國立高雄應用科技大學機械與精密工程研究所碩士論文,高雄市。Pecora, L. M. and Carroll, T. L., 1990, “Synchronization in chaotic system”, Physical Review Letters, Vol. 64, pp. 821-825.
Li, W. L. and Chang, K. M., 2009, “Robust synchronization of drive-response chaotic systems via adaptive sliding mode control”, Chaos, Solitons & Fractals, Vol. 39, pp. 2086-2092.
Nian, F., Liu, X. and Zhang, Y., 2018, “Sliding mode synchronization of fractional-order complex chaotic system with parametric and external disturbances”, Chaos, Solitons & Fractals, Vol. 116, pp. 22-28.
Deepika, D., Kaur, S. and Narayan S., 2018, “Uncertainty and disturbance estimator based robust synchronization for a class of uncertain fractional chaotic system via fractional order sliding mode control”, Chaos, Solitons & Fractals, Vol. 115, pp. 196-203.
Li, W. L., Liang, W. L. and Chang, K. M., 2019, “Adaptive Sliding Mode Control for Synchronization of Unified Hyperchaotic Systems”, 2019 24th International Conference on Methods and Models in Automation and Robotics, Vol. 20, pp. 93-98.
Zhu, Z. Y., Zhao, Z. S., Zhang, J., Wang, R. K. and Li, Z., 2020, “Adaptive fuzzy control design for synchronization of chaotic time-delay system”, Information Sciences, Vol. 535, pp. 225-241.
Pal, P., Mukherjee, V., Alemayehu, H., Jin, G. G. and Feyisa, G., 2021, “Generalized adaptive backstepping sliding mode control for synchronizing chaotic systems with uncertainties and disturbances”, Mathematics and Computers in Simulation, Vol. 190, pp. 793-807.
Su, H., Luo, R., Fu, J. and Huang, M., 2022, “Fixed time control and synchronization of a class of uncertain chaotic systems with disturbances via passive control method”, Mathematics and Computers in Simulation, Vol. 198, pp. 474-493.
Qiao, L. and Zhang, W., 2017, “Adaptive non-singular integral terminal sliding mode tracking control for autonomous underwater vehicles”, Control Theory & Applications, Vol. 11, pp. 1293-1306.
Labbadi, M, and Cherkaoui, M., 2019, “Robust Integral Terminal Sliding Mode Control for Quadrotor UAV with External Disturbances”, International Journal of Aerospace Engineering, Vol. 2019.
Ahmed, S., Wang, H. and Tian, Y., 2021, “Adaptive High-Order Terminal Sliding Mode Control Based on Time Delay Estimation for the Robotic Manipulators with Backlash Hysteresis”, IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 51, pp. 1128-1137.
Yao, Q., 2021, “Synchronization of second-order chaotic systems with uncertainties and disturbances using fixed-time adaptive sliding mode control”, Chaos, Solitons & Fractals, Vol. 142, pp. 130-141.
Chang, K. M., Cheng, J. L. and Liu, Y. T., 2022, “Machining control of non-axisymmetric aspheric surface based on piezoelectric fast tool servo system”, Precision Engineering, Vol. 76, pp. 160-172.
Baleanu, D., Sajjadi, S. S., Jajarmi, A. and Defterli, O., 2021, “On a nonlinear dynamical system with both chaotic and nonchaotic behaviors: a new fractional analysis and control”, Advances in Difference Equations 2021, Vol. 234.
Venkataraman, S. T. and Gulati, S., 1992, “Control of Nonlinear Systems Using Terminal Sliding Modes”, 1992 American Control Conference, pp. 891-893.
Zhihong, M., Paplinski, A. P. and Wu, H. R., 1994, “A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators”, IEEE Transactions on Automatic Control, Vol. 39, pp. 2464-2469.
Feng, Y., Yu, X. and Man, Z., 2002, “Non-singular terminal sliding mode control of rigid manipulators”, Automatica, Vol. 38, pp. 2159-2167.
Utkin, V. amd Shi, J., 1996, “Integral sliding mode in systems operating under uncertainty conditions”, Proceedings of 35th IEEE Conference on Decision and Control, pp. 4591-4596.
Asi, R. M., Hagh, Y. S., Palm, R. and Handroos, H., 2019, “Integral Non-Singular Terminal Sliding Mode Control for nth-Order Nonlinear Systems”, IEEE Access, Vol. 7, pp. 102792-102802.
陳建銘,2022,終端順滑模態控制於具液壓式放大機構之壓電進給刀座研究。國立高雄科技大學機械工程系碩士論文,高雄市。Mofid, O., Momeni, M., Mobayen, S. and Fekih, A., 2021, “A Disturbance-Observer-Based Sliding Mode Control for the Robust Synchronization of Uncertain Delayed Chaotic Systems: Application to Data Security”, IEEE Access, Vol. 9, pp. 16546-16555.
Takhi, H., Kemih, K., Moysis, L. and Volos, C., 2021, “Passivity based sliding mode control and synchronization of a perturbed uncertain unified chaotic system”, Mathematics and Computers in Simulation, Vol. 181, pp. 150-169.