1.王春和, & 唐麗英 (1992)。田口方法於線外品管多重品質特性製程最佳化之應用研究(未出版之碩士論文)。國立交通大學工業工程與管理學系,新竹市。2.王春和, & 唐麗英 (2000)。應用灰關聯分析法於多品質特性與等級類別品質特性之最佳化(未出版之博士論文)。國立交通大學工業工程與管理學系,新竹市。3.李輝煌 (2013)。田口方法品質設計的原理與實務(第三版)。新北市:高立圖書有限公司。
4.張志平、莊靜怡、黃啟原 (2003)。應用田口方法於石砮投擲最遠之研究。品質月刊, 39(8),80-82。
5.唐麗英、王春和 (2013)。從範例學MINITAB統計分析與應用(第一版)。新北市:博碩文化股份有限公司。
6.詹曉苓, & 梁馨科 (2006)。運用混合演算法於田口動態特性之參數設計最佳化(未出版之博士論文)。國立交通大學工業工程與管理學系,新竹市。7.蘇朝墩 (2002)。品質工程(第一版)。台北市:中華民國品質學會。
8.Ahilan, C., Kumanan, S., & Sivakumaran, N. (2010). Application of grey based Taguchi method in multi-response optimization of turning process. Advances in production Engineering & management, 5(3), 171-180.
9.Al-Refaie, A. (2010). Grey-data envelopment analysis approach for solving the multi-response problem in the Taguchi method. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 224(1), 147-158.
10.Al-Refaie, A., & Al-Tahat, M. D. (2011). Solving the multi-response problem in Taguchi method by benevolent formulation in DEA. Journal of intelligent Manufacturing, 22(4), 505-521.
11.Asiltürk, I., & Neşeli, S. (2012). Multi response optimisation of CNC turning parameters via Taguchi method-based response surface analysis. Measurement, 45(4), 785-794.
12.Jayaraman, P. (2014). Multi-response optimization of machining parameters of turning AA6063 T6 aluminium alloy using grey relational analysis in Taguchi method. Procedia Engineering, 97, 197-204.
13.Karna, S. K., & Sahai, R. (2012). An overview on Taguchi method. International Journal of Engineering and Mathematical Sciences, 1(1), 1-7.
14.Mehat, N. M., & Kamaruddin, S. (2011). Multi-response optimization of injection moulding processing parameters using the Taguchi method. Polymer-Plastics Technology and Engineering, 50(15), 1519-1526.
15.Nalbant, M., Gökkaya, H., & Sur, G. (2007). Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning. Materials & design, 28(4), 1379-1385.
16.Pal, S., & Gauri, S. K. (2010). Multi-response optimization using multiple regression–based weighted signal-to-noise ratio (MRWSN). Quality engineering, 22(4), 336-350.
17.Ranganathan, S., & Senthilvelan, T. (2011). Multi-response optimization of machining parameters in hot turning using grey analysis. The International Journal of Advanced Manufacturing Technology, 56(5-8), 455-462.
18.Sarıkaya, M., & Güllü, A. (2015). Multi-response optimization of minimum quantity lubrication parameters using Taguchi-based grey relational analysis in turning of difficult-to-cut alloy Haynes 25. Journal of Cleaner Production, 91, 347-357.
19.Sharma, V., Chattopadhyaya, S., & Hloch, S. (2011). Multi response optimization of process parameters based on Taguchi—Fuzzy model for coal cutting by water jet technology. The International Journal of Advanced Manufacturing Technology, 56(9-12), 1019-1025.
20.Sibalija, T. V., & Majstorovic, V. D. (2012). An integrated approach to optimise parameter design of multi-response processes based on Taguchi method and artificial intelligence. Journal of Intelligent manufacturing, 23(5), 1511-1528.
21.Tong, L. I., Su, C. T., & Wang, C. H. (1997). The optimization of multi‐response problems in the Taguchi method. International Journal of Quality & Reliability Management.