|
References [1] S.G. Poulopoulos, A. Yerkinova, G. Ulykbanova, V.J. Inglezakis. Photocatalytic treatment of organic pollutants in a synthetic wastewater using UV light and combinations of TiO2, H2O2 and Fe(III), PLoS ONE, 2019, 14, e0216745. [2] J.J. Rueda-Marquez, I. Levchuk, P. F. Ibanez, M. Sillanpaa. A critical review on application of photocatalysis for toxicity reduction of real wastewaters, Journal of Cleaner Production, 2020, 258, 120694. [3] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 1972, 238, 37. [4] J.H. Carey, J. Lawrence, H.M. Tosine, Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions, Bulletin of Environmental Contamination and Toxicology, 1976, 16, 697. [5] A.L. Pruden, D.F. Ollis. Photoassisted heterogeneous catalysis: The degradation of trichloroethylene in water, Journal of Catalysis, 1983, 82, 404. [6] D.F. Ollis. Homogeneous and Heterogeneous Photocatalysis, NATO Advanced Science Institutes Series, Series C, 1986, 174, 651. ("Proceedings of the NATO Advanced Research Workshop on Homogeneous and Heterogeneous Photocatalysis, Maratea, Potenza, Italy, September 1-7,1985.") [7] K.C. Hsu, T.H. Fang, C.I. Lee, T.H. Chen, T.H. Hsieh. Mechanistic Insights and Photodegradation of Heterostructure Graphene Oxide/Titanium Dioxide, Topics in Catalysis, 2020, 63, 956. [8] S. Sujinnapram, S. Nilphai, S. Moungsrijun, S. Krobthong, S. Wongrerkdee, Clustered ZnO nanoparticles synthesized via precipitation for photocatalytic degradation of methyl orange and glyphosate, Digest Journal of Nanomaterials and Biostructures, 2021, 16, 317. [9] S.P. Kim, M.Y. Choi, H.C. Choi. Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation, Materials Research Bulletin, 2016, 74, 85. [10] C.V. Reddy, B. Babu, I.N. Reddy, J. Shim, Synthesis and characterization of pure tetragonal ZrO2 nanoparticles with enhanced photocatalytic activity, 2018, 44, 6940. [11] P. Garg, S. Kumar, I. Choudhuri, A. Mahata, B. Pathak, Hexagonal Planar CdS Monolayer Sheet for Visible Light Photocatalysis, The Journal of Physical Chemistry C, 2016, 120, 7052. 70 [12] Y. Liu, N. Sun, J. Hu, S. Li, G. Qin, Photocatalytic degradation properties of α-Fe2O3 nanoparticles for dibutyl phthalate in aqueous solution system, Royal Society Open Science, 2018, 5, 172196. [13] X. Liu, H. Zhai, P. Wang, Q. Zhang, Z. Wang, Y. Liu, Y. Dai, B. Huang, X. Qin, X. Zhang. Synthesis of a WO3 photocatalyst with high photocatalytic activity and stability using synergetic internal Fe3+ doping and superficial Pt loading for ethylene degradation under visible light irradiation, Catalysis Science & Technology, 2019, 9, 652. [14] H.Y. Jiang, J. Liu, K. Cheng, W. Sun, J. Lin. Enhanced Visible Light Photocatalysis of Bi2O3 upon Fluorination, The Journal of Physical Chemistry C, 2013, 117, 20029. [15] H. Liu, H. Zhai, C. Hu, J. Yang, Z. Liu. Hydrothermal synthesis of In2O3 nanoparticles hybrid twins hexagonal disk ZnO heterostructures for enhanced photocatalytic activities and stability, Nanoscale Research Letters, 2017, 12, 466. [16] Y. Pan, S. Deng, L. Polavarapu, N. Gao, P. Yuan, C.H. Sow, Q.H. Xu. Plasmon-Enhanced Photocatalytic Properties of Cu2O Nanowire–Au Nanoparticle Assemblies, Langmuir, 2012, 28, 12304. [17] K. Nakata, A. Fujishima. TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13, 169. [18] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann. Understanding TiO2 Photocatalysis: Mechanisms and Materials, Chemical Reviews, 2014, 114, 9919. [19] X. Chen, Z. Wu, D. Liu, Z. Gao. Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes, Nanoscale Research Letters 2017, 12, 143. [20] K. Biernat, A. Malinowski, M. Gnat. (2013). The Possibility of Future Biofuels Production Using Waste Carbon Dioxide and Solar Energy. In (Ed.), Biofuels - Economy, Environment and Sustainability. IntechOpen. https://doi.org/10.5772/53831 [21] V. Sharma, S. Kumar, V. Krishnan. Shape selective Au-TiO2 nanocomposites for photocatalytic applications, Materials Today: Proceedings, 2016, 3, 1939. [22] D. Dahlan, S.K.M. Saad, A.U. Berli, A. Bajili, A.A. Umar. Synthesis of two-dimensional nanowall of Cu-Doped TiO2 and its application as photoanode in DSSCs. Physica E: Low-dimensional Systems and Nanostructures, 2017, 91, 185. 71 [23] F. Fu, Y. Zhang, L. Yan, Y. Wang, X. Gao, D. Wang. Preparation of efficient Ag/AgBr/TiO2 visible light photocatalyst for destruction of MB. Journal of Materials Science: Materials in Electronics, 2017, 28, 691. [24] C. Federico. Band-gap engineering: from physics and materials to new semiconductor devices, Science, 1987, 235, 172. [25] X. Zhang, L. Zhang. Electronic and band structure tuning of ternary semiconductor photocatalysts by self doping: the case of BiOI, The Journal of Physical Chemistry C, 2010, 114, 18198. [26] M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O'Shea, M.H. Entezari, D.D. Dionysiou. A review on the visible light active titanium dioxide photocatalysts for environmental applications, Applied Catalysis B: Environmental, 2012, 125, 331. [27] D.S. Kim, S.J. Han, S.Y. Kwak. Synthesis and photocatalytic activity of mesoporous TiO2 with the surface area, crystallite size, and pore size, Journal of Colloid and Interface Science, 2007, 316, 85. [28] D.P. Das, N. Baliarsingh, K.M. Parida. Photocatalytic decolorisation of methylene blue (MB) over titania pillared zirconium phosphate (ZrP) and titanium phosphate (TiP) under solar radiation. Journal of Molecular Catalysis A: Chemical, 2007, 261, 254. [29] J.C. Jamieson, B. Olinger. Pressure-temperature studies of anatase, brookite rutile, and Ti02(II): A discussion, American Mineralogist, 1969, 54, 1477. [30] A.N. Banerjee. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures, Nanotechnology, Science and Applications, 2011, 4, 35. [31] P.J.P. Espitia, N.F.F. Soares, J.S.R. Coimbra, N.J. Andrade, R.S. Cruz, E.A.A. Medeiros. Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications, Food and Bioprocess Technology, 2012, 5, 1447. [32] L. Znaidi. Sol–gel-deposited ZnO thin films: A review, Materials Science and Engineering: B, 2010, 174, 18. [33] T.T. Rantala, T.S. Rantala, V. Lantto. Surface relaxation of the (110) face of rutile SnO2, Surface Science, 1999, 420, 103. [34] M. Grätzel. Photoelectrochemical cells, Nature, 2001, 414, 338. 72 [35] F. Huang, A. Yan, H. Zhao, (2016). Influences of Doping on Photocatalytic Properties of TiO2 Photocatalyst. In (Ed.), Semiconductor Photocatalysis - Materials, Mechanisms and Applications. IntechOpen. https://doi.org/10.5772/63234 [36] S. Dursun, İ.C. Kaya, M. Kocabaş, H. Akyildiz, V. Kalem. Visible light active heterostructured photocatalyst system based on CuO plate‐like particles and SnO2 nanofibers, 2020, 17, 1479. [37] H. Koohestani, S.K.J.D. Sadrnezhaad, W. Treatment. Photocatalytic degradation of methyl orange and cyanide by using TiO2/CuO composite. International Journal of Applied Ceramic Technology, 2016, 57, 22029. [38] S. Harish, J. Archana, M. Sabarinathan, M. Navaneethan, K.D. Nisha, S. Ponnusamy, C. Muthamizhchelvan, H. Ikeda, D.K. Aswal, Y. Hayakawa. Controlled structural and compositional characteristic of visible light active ZnO/CuO photocatalyst for the degradation of organic pollutant, 2017, 418, 103. [39] J. Lee, S.L. Bartelt-Hunt, Y. Li, E.J. Gilrein. The influence of ionic strength and organic compounds on nanoparticle TiO2 (n-TiO2) aggregation. Chemosphere, 2016, 154, 187. [40] Α. Koltsakidou, M. Antonopoulou, Ε. Εvgenidou, I. Konstantinou, A.E. Giannakas, M. Papadaki, D. Bikiaris, D.A. Lambropoulou. Photocatalytical removal of fluorouracil using TiO2-P25 and N/S doped TiO2 catalysts: A kinetic and mechanistic study. Science of The Total Environment, 2017,578, 257. [41] R. Georgekutty, M.K. Seery, S.C. Pillai. A Highly Efficient Ag-ZnO Photocatalyst: Synthesis, Properties, and Mechanism, The Journal of Physical Chemistry C, 2008, 112, 13563. [42] S.J. Darzi, H. Bastami. Au Decorated Mesoporous TiO2 as a High Performance Photocatalyst towards Crystal Violet Dye, Advanced Journal of Chemistry-Section A, 2022, 5, 22-30. [43] H.R. Choe, S.S. Han, Y.I. Kim, C. Hong, E.J. Cho, K.M. Nam. Understanding and Improving Photocatalytic Activity of Pd-Loaded BiVO4 Microspheres: Application to Visible Light-Induced Suzuki–Miyaura Coupling Reaction, ACS Applied Materials & Interfaces, 2021, 13, 1714. [44] G.I. Taylor. Electrically driven jets. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1969, 313, 453-475. [45] S. Agarwal, J.H. Wendorff, A. Greiner. Use of electrospinning technique for biomedical applications, Polymer, 2008, 49, 5603. 73 [46] C. Liu, X. Li, T. Liu, Z. Liu, N. Li, Y. Zhang, C. Xiao, X. Feng. Microporous CA/PVDF membranes based on electrospun nanofibers with controlled crosslinking induced by solvent vapor, Journal of membrane science, 2016, 512, 1. [47] H. Wei, F. Zhang, D. Zhang, Y. Liu, J. Leng. Shape‐memory behaviors of electrospun chitosan/poly (ethylene oxide) composite nanofibrous membranes, Journal of Applied Polymer Science, 2015, 132, 42532. [48] P. Gupta, C. Elkins, T.E. Long, G.L. Wilkes. Electrospinning of linear homopolymers of poly (methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent, Polymer, 2005, 46, 4799. [49] S. Fukushima, Y. Karube, H. Kawakami. Preparation of ultrafine uniform electrospun polyimide nanofiber, Polymer journal, 2010, 42, 514. [50] Y.K. Fuh, Y.C. Wu, Z.Y. He, Z.M. Huang, W.W. Hu. The control of cell orientation using biodegradable alginate fibers fabricated by near-field electrospinning. Materials Science and Engineering: C, 2016, 62, 879. [51] J. Tao, S. Shivkumar. Molecular weight dependent structural regimes during the electrospinning of PVA, Materials letters, 2007, 61, 2325. [52] C.L. Casper, J.S. Stephens, N.G. Tassi, D.B. Chase, J.F. Rabolt. Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process, Macromolecules, 2004, 37, 573. [53] C.J. Brinker, G.W. Scherer. The physics and chemistry of sol–gel processing, Sol-Gel Science, Book. 1990. [54] A. Karatutlu, A. Barhoum, A. Sapelkin. Liquid-phase synthesis of nanoparticles and nanostructured materials, Emerging Applications of Nanoparticles and Architecture Nanostructures, Book. Chapter 1. 2018. [55] T. Graham. On the properties of silicic acid and other analogous colloidal substances, Proceedings of the Royal Society of London, 1864, 17, 318. [56] B. Jirgensons, M.E. Straumanis. The history and scope of colloid chemistry, A Short Textbook of Colloid Chemistry, Book. 1962. [57] A.C. Pierre. Introduction to sol-gel processing, The Kluwer International Series in Sol-Gel Processing, Book, Chapter 1. 1998. [58] C.J. Brinker, G.W. Scherer. Sol → gel → glass: I. Gelation and gel structure, Journal of Non-Crystalline Solids, 1985, 70, 301. 74 [59] A. Henglein. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles, Chemical reviews, 1989, 89, 1861. [60] K.C. Hsu, Y.N. Chang, T.H. Fang, T.H. Chen, Y.S. Fu. Photocatalytic and optical characteristics of ZnIn2S4 microspheres, Mater Res Express, 2018, 5, 115507. [61] K. Wang, L. Yu, S. Yin, H. Li, H. Li. Photocatalytic degradation of methylene blue on magnetically separable FePc/Fe3O4 nanocomposite under visible irradiation, Pure and Applied Chemistry, 2009, 81, 2327. [62] W.J. Chen, K.C. Hsu, T.H. Fang, C.I. Lee, T.H. Chen, T.H. Hsieh. Structural, optical characterization and photocatalytic behavior of Ag/TiO2 nanofibers, Digest Journal of Nanomaterials and Biostructures, 2021, 16, 1227-1234. [63] K.C. Hsu, T.H. Fang, C.I. Lee, T.H. Chen, T.H. Hsieh. Mechanistic insights and photodegradation of heterostructure graphene oxide/titanium dioxide, Topics in Catalysis, 2020, 63, 956. [64] W.J. Chen, K.C. Hsu, T.H. Fang, T.H. Chen, M.H. Li. Characteristics and heterostructure of metal-doped TiO2/ZnO nanocatalysts, Current Applied Physics. 2022, 38, 1. [65] S.A. Tomás, A. Luna-Resendis, L.C. Cortés-Cuautli, D. Jacinto. Optical and morphological characterization of photocatalytic TiO2 thin films doped with silver, Thin Solid Films, 2008, 518, 1337. [66] F. Bensouici, T. Souier, A.A. Dakhel, A. Iratni, R. Tala-Ighil, M. Bououdina. Synthesis, characterization and photocatalytic behavior of Ag doped TiO2 thin film, Superlattices and Microstructures, 2015, 85, 255-265.
|