|
[1] Anderson, J. D. (2017). Fundamentals of Aerodynamics (6th ed.). McGraw-Hill Education. [2] Katz, J. (2016). Low-Speed Aerodynamics: From Wing Theory to Panel Methods (1st ed.). Cambridge University Press. [3] Bertin, J. J., & Cummings, R. M. (2014). Aerodynamics for Engineers (6th ed.). Pearson. [4] Chen, Y., Kumar, S., Duan, L., & Viquerat, A. (2015). CFD study ofpara-chute performance during Mars entry. Journal of Spacecraft and Rockets, 52(1), 97-106. [5] Iwamoto, T., & Aoki, S. (2018). CFD analysis of the Mars helicopter. Aer-ospace Science and Technology, 79, 395-402. [6] Jain, A., Rallabandi, A. P., & Roy, S. (2020). A numerical model for inves-tigating surface roughness effects on Martian lander aerodynamics. Acta Astronautica, 169, 203-213. [7] Smith, M. D., Gliem, F., Cooper, B. K., & Way, D. W. (1997). Mars Path-finder entry aerodynamics. Journal of Spacecraft and Rockets, 34(5), 631-636. [8] Vasavada, A. R., Crisp, J., Yung, Y. L., & Farmer, C. B. (1999). Aerody-namics and stability of the Mars Polar Lander. Journal of Spacecraft and Rockets, 36(6), 861-867. [9] Balaram, J., Canham, Timothy, Duncan, Courtney, Golombek, Matt, Grip, Håvard Fjær, Johnson, Wayne, Maki, Justin, Quon, Amelia, Stern, Ryan, and Zhu, David, Mars Helicopter Technology Demonstrator, AIAA SciTech Forum, 8 – 12 January 2018, Kissimmee, Florida, 2018 AIAA At-mospheric Flight Mechanics Conference, DOI: 10.2514/6.2018-0023 [10] Koning, Witold J. F., Johnson, Wayne, and Allan, Brian G. Allan, Gen-eration of Mars Helicopter Rotor Model for Comprehensive Analyses, AHS Specialists’ Conference on Aeromechanics Design for Transformative Ver-tical Flight, San Francisco, California, USA, January 16 - 18, 2018 [11] A. Oyama and K. Fujii, A Study on Airfoil Design for Future Mars Air-plane, 44th AIAA Aerospace Sciences Meeting and Exhibit, Nevada, AIAA 2006-1484 (2006) [12] P. S. Kenney and M. A. Croom., Simulating the ARES aircraft in the mars environment, 2nd AIAA Unmanned Unlimited Systems, Technolo-gies, and Operations - Aerospace Conference and Workshop and Exhibit. DOI:10.2514/6/20003-6579, (2003) 52 [13] Conlisk, A. T., “Modern Helicopter Aerodynamics,” Annual Review Fluid Mechanics, Vol. 29, Jan. 1997, pp. 515–567. DOI: 10.1146/an-nurev.fluid.29.1.51 [14] Sobieczky, H., and Seebass, A. R., “Supercritical Airfoil and Wing De-sign,” Annual Review of Fluid Mechanics, Vol. 16, 1984, pp. 337–363. DOI:10.1146/annurev.fl.16.010184.002005 [15] Munday, P., Taira, K., Suwa, T., Numata, D., and Asai, K., “Non-Linear Lift on a Triangular Airfoil in Low-Reynolds-Number Compressible Flow,” Journal of Aircraft, Vol. 52, No. 3, May 2015, pp. 924–931. DOI: https://doi.org/10.2514/1.C032983 [16] Caros, Lidia, Buxton, Oliver, Shigeta, Tsuyoshi, Nagata, Takayuki, Nonomura, Taku, and Keisuke Asai, Direct Numerical Simulation of Flow over a Triangular Airfoil Under Martian Conditions, AIAA Journal, DOI: https://doi.org/10.2514/1.J061454 [17] Yang, H., and Agarwal, R., “CFD Simulations of a Triangular Airfoil for Martian Atmosphere in Low-Reynolds Number Compressible Flow,” AIAA Aviation Forum, AIAA Paper 2019-2923, June 2019. DOI: https://doi.org/10.2514/6.2019-2923 [18] Koning, W. J. F., Romander, E. A., and Johnson, W., “Optimization of Low Reynolds Number Airfoils for Martian Rotor Applications Using an Evolutionary Algorithm,” AIAA Science and Technology Forum and Ex-position (AIAA SciTech), AIAA Paper 2020-0084, 2020. DOI: https://doi.org/10.2514/6.2020-0084 [19] Spalart, P. R., & Allmaras, S. R. (1994). A one-equation turbulence model for aerodynamic flows. La Recherche Aerospatiale, 1-13. [20] Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, 32(8), 1598-1605. [21] Menter, F. R., Kuntz, M., & Langtry, R. (2003). Ten years of industrial experience with the SST turbulence model. Turbulence, heat and mass transfer 4, 625-632. [22] Xiao, Z., & Zhang, X. (2019). Comparative study on turbulence models in hypersonic flow simulations. Aerospace Science and Technology, 94, 105356. [23] Gülhan, A., & Taşkin, K. (2016). Aerodynamic characteristics of a blunt body at Martian atmospheric conditions. Aerospace Science and Technol-ogy, 51, 126-136. 53 [24] Sivaprasad, R., Chatterjee, D., & Banerjee, S. (2018). Numerical study of heat transfer and fluid flow in a converging–diverging channel using Spalart-Allmaras model. Journal of Thermal Analysis and Calorimetry, 131(2), 1435-1446. [25] Piggott, W. T., & Liu, Y. (2015). Assessment of turbulence models for low Reynolds number flows over airfoils. Journal of Wind Engineering and Industrial Aerodynamics, 138, 104-117. [26] Saluja, A., & Joshi, S. (2016). CFD analysis of turbulent flow over a NACA 0018 airfoil using Spalart-Allmaras model. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 20(1) [27] ANSYS Fluent Documents, 4.3.2 Transport Equation for the Spalart-Allmaras Model [28] Wilcox, D. C. (2006). Turbulence modeling for CFD (3rd ed.). DCW in-dustries [29] ANSYS Fluent Documents, 4.5.2 Shear-Stress Transport (SST) ????- ???? Model [30] Tabeling, Patrick, Introduction to Microfluidics, Physics at the Micro-metric scale, Oxford University Press, Page no.: 37 [31] Versteeg, H.K., & Malalasekera, W. (2007). An Introduction to Compu-tational Fluid Dynamics: The Finite Volume Method (2nd ed.). Pearson Education Limited.
|