|
[1]Omata, T.; Ueda, N.; Ueda, K.; Kawazoe, H. New ultraviolet-transport electroconductive oxide, ZnGa2O4 spinel. Appl. Phys. Lett. 1994, 64, 1077–1078. [2]Jiao, Z.; Ye, G.; Chen, F.; Li, M.; Liu, J. The preparation of ZnGa2O4 nano crystals by spray coprecipitation and its gas sensitive characteristics. Sensors 2002, 2, 71-78. [3]Yuan, Y.; Du W.; Qian X. ZnxGa2O3+X (0 x 1) solid solution nanocrystals: tunable composition and optical properties. J. Mater. Chem. 2012, 22, 653-659. [4]Hussen, M.K.; Dejene, F.B.; Gonfa, G.G. Effect of citric acid on material properties of ZnGa2O4:Cr3+ nanopowder by sol-gel method. Appl. Phys. A Mater. 2018, 124, 390. [5]Shi, Q.; Wang, C.Z.; Zhang, D.; Li, S.H.; Zhang, L.M.; Wang, W.J.; Zhang, J.Y. Luminescence of Cr3+ doped ZnGa2O4 thin films deposited by pulsed laser ablation. Thin Solid Film 2012, 520, 6845–6849. [6]Ahmad, I.; Kottaisamy, M.; Rama, N.; Rao, M.; Bhattacharya, SS. Thin film luminescence of ZnGa2O4: Mn deposited by PLD. Scr. Mater. 2006, 52,5 237-240. [7]Lee, Y.E.; Norton, D.P.; Budai, J.D.; Wei, Y. Enhanced ultraviolet photoconductivity in semiconducting ZnGa2O4 thin films. J. Appl. Phys. 2001, 90, 3863. [8]Wang, W.K.; Huang, S.Y; Jiang, M.C.; Wuu, D.S. Optoelectronic Properties and Structural Characterization of GaN Thick Films on Different Substrates through Pulsed Laser Deposition. Appl. Sci. 2017, 7(1), 87. [9]Wang, W.K.; Jiang, M.C. Growth behavior of hexagonal GaN on Si(100) and Si(111) substrates prepared by pulsed laser deposition. Jpn. J. Appl. Phys. 2016, 55 095503. [10]Bhat, T.N.; Rajpalke, M.K.; Roul B.; Kumar, M.; Krupanidhi S.B. Substrate nitridation induced modulations in transport properties of wurtzite GaN/p-Si (100) heterojunctions grown by molecular beam epitaxy Jpn. J. Appl. Phys. 2011, 110, 093718. [11]Morkoc, H.; Strite, S.; Gao, G.B.; Lin, M.E.; Sverdlov, B.; Burns, M. Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies. Jpn. J. Appl. Phys. 1994, 76, 1363. [12]Cheng, L.C.; Huang, C.Y.; Horng, R.H. Thickness effect on operational modes of ZnGa2O4 MOSFETs. IEEE J. Electron Devices Soc. 2018, 6, 432-437. [13]Li, P.; Zhao, X.; Sun, H.; Wang, L.; Song, B.; Gao, B.; Fan, W. Theoretical studies on the form and effect of N-doping in an ZnGa2O4 photocatalyst. RSC Adv. 2016, 78(6), 74483-74492. [14]Sun , X.J.; Maeda, K.; Faucheur, M.L.; Teramura, K.; Domen, K. Preparation of (Ga1−xZnx) (N1−xOx) solid-solution from ZnGa2O4 and ZnO as a photo-catalyst for overall water splitting under visible light. Appl. Catal. A 2007, 327, 114-121. [15]Wu, M.R.; Li, W.Z.; Tung, C.Y.; Huang, C.Y.; Chiang, Y.H.; Liu, P.L.; Horng, R.H. NO gas sensor based on ZnGa2O4 epilayer grown by metalorganic chemical vapor deposition. Sci. Rep. 2019, 9, 7459. [16]An, S.; Park, S.; Ko, H.; Jin. C.; Lee, C. NO2 Gas sensing properties of multiple networked ZnGa2O4 nanorods coated with TiO2. J. Nanosci. Nanotec. 2015, 15, 433-438. [17]Kim, Y.J.; Jeong, Y.H.; Kang, K.D.; Lee, K.G.; Han, J.I.; Park, Y.K.; Cho, K.I.; Growth and luminescent characteristics of ZnGa2O4 thin film phosphor prepared by radio frequency magnetron sputtering J. Vac. Sci. Technol. 1998, 16, 1239-1243. [18]Kamal, C.S.; Boddu, S.; Vishwanadh, B.; Rao, K.R.; Sudarsan, V.; Vatsa, R.K. Blue luminescence from ZnGa2O4: Effect of lattice distortion and particle size. J. Lumin. 2017, 188, 429-435. [19]Hirano, M.; Okumura, S.; Hasegawa, Y.; Inagaki, M. Direct precipitation of spinel type oxide ZnGa2O4 from aqueous solutions at low temperature below 90oC. Inorg. Mater. 2001, 3, 797-801. [20]Jang, Y.; Hong, S.; Seo, J.; Cho, H.; Char, K.; Galazka, Z. Thin film transistors based on ultra-wide bandgap spinel ZnGa2O4. Appl. Phys. Lett. 2020, 116, 202104. [21]Shen, Y.S.; Wang, W.K.; Horng, R.H. Characterizations of metal-oxide-semiconductor field-effect transistors of ZnGaO grown on sapphire substrate. IEEE J. Electron Devices Soc. 2017, 5, 112-116. [22]Hsieh, I.J.; Feng, M.S.; Kuo, K.T.; Lin, P. Growth of ZnGa2O4 phosphor by radio frequency magnetron sputtering. J. Electrochem. Soc. 1994, 141, 1617-1621. [23]Hsieh, I.J.; Chu, K.T.; Yu, C.F.; Feng, M.S. Cathodoluminescent characteristics of ZnGa2O4 phosphor grown by radio frequency magnetron sputtering. J. Appl. Phys. 1994, 76, 3735. [24]Wang, W.K.; Xu, Y.J.; Huang, S.Y.; Liu, K.F.; Tsai, P.C. Structural characteristics and photoluminescence properties of sputter-deposition ZnGa2O4 thin films on sapphire and Si(100) substrates. Coatings 2019, 9, 469. [25]Liang, Y.J,; Nu, Z.Y.; Chao, L. Formation of ZnGa2O4 films by multilayer deposition and subsequent thermal annealing. Chin. Phys. B 2014, 23, 048105. [26]Chen, P.W.; Huang, S.Y.; Yuan, S.H.; Chen, Y.A.; Hsiao, P.W.;Wuu, D.S. Quasi-single-crystalline ZnGa2O4 films via solid phase epitaxy for enhancing deep-ultraviolet photoresponse. Adv. Mater. Interfaces 2019, 6, 1901075. [27]Chen, H.; Wen, W.; Wang, Q.; Hanson, J.C.; Muckerman, J.T.; Fujita, E.; Frenkel, A.I.; Rodriguez, J.A. Preparation of (Ga1−xZnx)(N1−xOx) Photocatalysts from the Reaction of NH3 with Ga2O3/ZnO and ZnGa2O4: In Situ Time-Resolved XRD and XAFS Studies. J. Phys. Chem. C 2009, 113, 3650-3659. [28]Zhang, W.W.; Zhang, J.Y.; Chen, Z.Y.; Wang, T.M.; Zheng, S.K. Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors. J. Lumin. 2010, 130, 1738-1743. [29]Sharma, S.K.; Bessiere, A.; Basavaraju, N.; Priolkar, K.R.; Binet, L.; Viana, B.; Gourier, D. Interplay between chromium content and lattice disorder on persistent luminescence of ZnGa2O4: Cr3+ for in vivo imaging. J. Lumin. 2014, 155, 254-256. [30]Tran, T.K.; Park, W.; Tomm, J.W.; Wagner, B.K.; Jacobsen, S.M.; Summers, C.J. Photoluminescence properties of ZnGa2O4: Mn powder phosphors. Jpn. J. Appl. Phys. 1995, 78, 5691. [31]Md, I.A.; Kottaisamy, M.; Rama, N.; Rao, M.S.R.; Bhattacharya, S.S. Thin film luminescence of ZnGa2O4: Mn deposited by PLD. Scr. Mater. 2006, 54, 237-240. [32]Somasundaram, K.; Abhilash, K.P.; Sudarsan, V.; Selvin, P.C.; Kadam R.M. Defect luminescence and lattice strain in Mn2+ doped ZnGa2O4. Physica B Condens. Matter 2016, 491, 79-83. [33]Tasi, S.H.; Basu, S.; Huang, C.H.; Hsu, L.C.; Lin, Y.G.; Horng, R.H. Deep-ultraviolet photodetectors based on epitaxial ZnGa2O4 thin films. Sci. Rep. 2018, 8, 14056. [34]Hrong, R.H.; Zeng, Y.Y.; Wang, W.K.; Tsai, C.L.; Fu, Y.K.; Kuo, W.H. Transparent electrode design for AlGaN deep-ultraviolet light-emitting diodes. Opt. Express 2017, 25, 32206-32213. [35]Huang, W.L.; Li C.H.; Chang, S.P.; Chang, S.J. The effect of oxygen partial pressure and annealing process on the characteristics of ZnGa2O4 MSM UV photodetector. ECS J. Solid State Sci. Technol. 2019, 8, Q3213-Q3216. [36]Lou, Z.; Li, L.; Shen, G. High-performance rigid and flexible ultraviolet photodetectors with single-crystalline ZnGa2O4 nanowires. Nano Res. 2015, 8, 2162–2169. [37]Tsai, S.H.; Shen, Y.C.; Huang, C.Y.; Horng, R.H. Deep-ultraviolet Schottky photodetectors with high deep-ultraviolet visible rejection based on a ZnGa2O4 thin film. Appl. Surf. Sci. 2019, 496, 143670. [38]Wang, W.K.; Liu, K.F.; Tsai, P.C.; Xu, Y.J.; Huang, S.Y. Influence of annealing temperature on the properties of ZnGa2O4 thin films by magnetron sputtering. Coatings 2019, 9, 859. [39]Soignard, E.; Machon D.; McMillan, P.F.; Dong, J.; Xu, B.; Leinenweber, K. Spinel-Structured gallium oxynitride (Ga3O3N) synthesis and characterization : An experimental and theoretical study. Chem. Mater. 2005, 17, 5465-5472. [40]Song, D.Y., Li, L.; Li, B.S.; Sui, Y.; Shen, A.D. Band gap engineering of N-alloyed Ga2O3 thin films. AIP Adv. 2016, 6, 065016. [41]Maeda, K.; Teramura, K.; Takata, T.; Hara, M.; Saito, N.; Toda, K. Inoue, Y.; Kobayashi, H.; Domen, K. Overall water splitting on (Ga1-xZnx)(N1-xOx) solid solution photocatalyst : relationship between physical properties and photocatalytic activity. J. Phys. Chem. B 2005, 109, 20504-20510. [42]Boppana, V.B.R.; Doren, D.J.; Lobo, R.F. Analysis of Ga coordination environment in novel spinel zinc gallium oxy-nitride photocatalysts. J. Mater. Chem. 2010, 20, 9787-9797. [43]Yang, M.; Huang, Q.; Jin, X. Microwave synthesis of porous ZnGaNO solid solution for improved visible light photocatalytic performance. Solid State Sci. 2012, 14, 465-470. [44]Xia, Y.; Wang, T.; Zhao, X.Z.; Jiao, X.L.; Chen, D.R. Theoretical and experimental investigations on effects of native point defects and nitrogen doping on the optical band structure of spinel ZnGa2O4. J. Phys. Chem. C 2018, 122, 5509-5517. [45]Boppana, V.B.R.; Schmidt, H.; Jiao, F.; Doren, J.D.; Lobo, F.R. Structure analysis and photocatalytic properties of spinel zinc gallium oxonitrides. Chem.Eur. J. 2011, 17, 12417-12428. [46]Chandolu, A.; Nikishin, S.; Holtz, M.; Temkin, H. X-ray diffraction study of AlN/AlGaN short period superlattices. J. Appl. Phys. 2007, 102, 114909. [47]Jeon, J.W.; Jeon, D.W.; Sahoo, T.; Kim, M.; Beak, J.H.; Hoffman, J.L.; Kim, N.S.; Lee, I.H. Effect of annealing temperature on optical band-gap of amorphous indium zinc oxide film. J. alloy. Compd. 2011, 509, 10062-10065. [48]Sharma, S.; Vyas, S.; Periasamy, C.; Chakrabarti, P. Structural and optical characterization of ZnO thin films for optoelectronic device applications by RF sputtering technique. Superlattices Microstruct 2014, 75, 378-389. [49]Zak, A.K.; Majid, W.H.A.; Abrishami, M.E.; Yousefi, R. X-ray analysis of ZnO nanoparticles by Williamson–Hall and size-strain plot methods. Solid State Sci. 2011, 13, 251-256.
|