Abdel-Ghani, N. T., El-Chaghaby, G. A. & Helal, F. S. (2015). Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes. Journal of Advanced Research, 6, 405–415.
Ahmad, J., Naeem, S., Ahmad, M., Usman, A. R. A. & Al-Wabel, M. I. (2019). A critical review on organic micropollutants contamination in wastewater and removal through carbon nanotubes. Journal of Environmental Management, 246, 214–228.
Alvarez-Torrellas, S., Rodriguez, A., Ovejero, G. & Garcia, J. (2016). Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials. Chemical Engineering Journal, 283, 936–947.
Anjum, H., Johari, K., Gnanasundaram, N., Ganesapillai, M., Arunagiri, A., Regupathi, I. & Thanabalan, M. (2019). A review on adsorptive removal of oil pollutants (BTEX) from wastewater using carbon nanotubes. Journal of Molecular Liquids, 277, 1005–1025.
Awad, A. M., Jalab, R., Benamor, A., Nasser, M. S., Ba-Abbad, M. M., El-Naas, M. & Mohammad, A. W. (2020). Adsorption of organic pollutants by nanomaterial-based adsorbents: An overview. Journal of Molecular Liquids, 301, 112335.
Babic, S., Horvat, A. J. M., Pavlovic, D. M. & Kastelan-Macan, M. (2007). Determination of pKa values of active pharmaceutical ingredients. Trends in Analytical Chemistry, 26, 1043–1061.
Baran, W., Adamek, E., Ziemianska, J. & Sobczak, A. (2011). Effects of the presence of sulfonamides in the environment and their influence on human health. Journal of Hazardous Materials, 196, 1–15.
Danner, M. C., Robertson, A., Behrends, V. & Reiss, J. (2019). Antibiotic pollution in surface fresh waters: Occurrence and effects. Science of the Total Environment, 664, 793–804.
Gao, P., Mao, D., Luo, Y., Wang, L., Xu, B. & Xu, L. (2012). Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment. Water Research, 46, 2355–2364.
Geng, X., Lv, S., Yang, J., Cui, S. & Zhao, Z. (2021). Carboxyl-functionalized biochar derived from walnut shells with enhanced aqueous adsorption of sulfonamide antibiotics. Journal of Environmental Management, 280, 111749.
Guo, X. & Wang, J. (2019). Comparison of linearization methods for modeling the Langmuir adsorption isotherm. Journal of Molecular Liquids, 296, 111850.
Ho, Y. S. & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.
Huang, D., Wang, X., Zhang, C., Zeng, G., Peng, Z., Zhou, J., Cheng, M., Wang, R., Hu, Z. & Qin, X. (2017). Sorptive removal of ionizable antibiotic sulfamethazine from aqueous solution by graphene oxide-coated biochar nanocomposites: Influencing factors and mechanism. Chemosphere, 186, 414–421.
Ji, L., Chen, W., Zheng, S., Xu, Z. & Zhu, D. (2009). Adsorption of sulfonamide antibiotics to multiwalled carbon nanotubes. Langmuir, 25, 11608–11613.
Kavitha, D. & Namasivayam, C. (2007). Recycling coir pith, an agricultural solid waste, for the removal of procion orange from wastewater. Dyes and Pigments, 74, 237–248.
Kim, H., Hwang, Y. S. & Sharma, V. K. (2014). Adsorption of antibiotics and iopromide onto single-walled and multi-walled carbon nanotubes. Chemical Engineering Journal, 255, 23–27.
Kuo, C. Y., Wu, C. H. & Wu, J. Y. (2008). Adsorption of direct dyes from aqueous solutions by carbon nanotubes: Determination of equilibrium, kinetics and thermodynamics parameters. Journal of Colloid and Interface Science, 327, 308–315.
Li, X., Zhou, M., Pan, Y., Xu, L. & Tang, Z. (2017). Highly efficient advanced oxidation processes (AOPs) based on pre-magnetization Fe0 for wastewater treatment. Separation and Purification Technology, 178, 49–55.
Lin, A. Y. & Tsai, Y. T. (2009). Occurrence of pharmaceuticals in Taiwan's surface waters: Impact of waste streams from hospitals and pharmaceutical production facilities. Science of the Total Environment, 407, 3793–3802.
Lin, C. C. & Wu, M. S. (2018). Feasibility of using UV/H2O2 process to degrade sulfamethazine in aqueous solutions in a large photoreactor. Journal of Photochemistry & Photobiology A: Chemistry, 367, 446–451.
Liu, Y., Liu, X., Dong, W., Zhang, L., Kong, Q. & Wang, W. (2017). Efficient adsorption of
Sulfamethazine onto modified activated carbon: A plausible adsorption mechanism. Scientific Reports, 7, 1–12.
Liu, L., Luo, X. B., Ding, L. & Luo, S. L. (2019). Nanomaterials for the Removal of Pollutants and Resource Reutilization, 1st Ed., Elsevier, 83–147.
Liu, Y., Nie, P. & Yu, F. (2021). Enhanced adsorption of sulfonamides by a novel carboxymethyl cellulose and chitosan-based composite with sulfonated graphene oxide. Bioresource Technology, 320, 124373.
Liu, Y., Peng, Y., An, B., Li, L. & Liu, Y. (2020). Effect of molecular structure on the adsorption affinity of sulfonamides onto CNTs: Batch experiments and DFT calculations. Chemosphere, 246, 125778.
Lv, M., Li, D., Zhang, Z., Logan, B. E., Liu, G., Sun, M., Dai, C. & Feng, Y. (2021). Unveiling the correlation of Fe3O4 fractions upon the adsorption behavior of sulfamethoxazole on magnetic activated carbon. Science of the Total Environment, 757, 143717.
Mall, I. D., Srivastava, V. C. & Agarwal, N. K. (2006). Removal of Orange-G and Methyl Violet dyes by adsorption onto bagasse fly ashdkinetic study and equilibrium isotherm analyses. Dyes and Pigments, 69, 210–223.
Masri, A. K., Yen, T. W., Ahmad, M. A. & Karim, S. (2020). Graphene-based nanomaterial for the removal of sulfamethoxazole in water. Materials Today: Proceedings, 31, 198–201.
Moussout, H., Ahlafi, H., Aazza, M. & Maghat, H. (2018). Critical of linear and nonlinear equations of pseudo-first order and pseudo-second order kinetic models. Karbala International Journal of Modern Science, 4, 244–254.
Naderi, M. (2015). Progress in Filtration and Separation, 1st Ed., Elsevier, 585–608.
Ncibi, M. C. & Sillanpaa, M. (2015). Optimized removal of antibiotic drugs from aqueous solutions using single, double and multi-walled carbon nanotubes. Journal of Hazardous Materials, 298, 102–110.
Nollet, H., Roels, M., Lutgen, P., Meeren, P. & Verstraete, W. (2003). Removal of PCBs from wastewater using fly ash. Chemosphere, 53, 655–665.
Ozcan, A. S., Erdem B. & Ozcan A. (2004). Adsorption of Acid Blue 193 from aqueous solutions onto Na–bentonite and DTMA–bentonite. Journal of Colloid and Interface Science, 280, 44–54.
Peng, H., Pan, B., Wu, M. Liu, Y., Zhang, D. & Xing, B. (2012). Adsorption of ofloxacin and norfloxacin on carbon nanotubes: Hydrophobicity- and structure-controlled process. Journal of Hazardous Materials, 233–234, 89–96.
Peng, J., Wu, E., Wang, N., Quan, X., Sun, M. & Hu, Q. (2019). Removal of sulfonamide antibiotics from water by adsorption and persulfate oxidation process. Journal of Molecular Liquids, 274, 632–638.
Poudel, Y. R. & Li, W. (2018). Synthesis, properties, and applications of carbon nanotubes filled with foreign materials: a review. Materials Today Physics, 7, 7–34.
Prasannamedha, G. & Kumar, P. S. (2020). A review on contamination and removal of sulfamethoxazole from aqueous solution using cleaner techniques: Present and future perspective. Journal of Cleaner Production, 250, 119553.
Rajapaksha, A. U., Vithanage, M., Zhang, M., Ahmad, M., Mohan, D., Chang, S. X. & Ok, Y. S. (2014). Pyrolysis condition affected sulfamethazine sorption by tea waste biochars. Bioresource Technology, 166, 303–308.
Shi, Y., Liu, G., Wang, L. & Zhang, H. (2019). Activated carbons derived from hydrothermal impregnation of sucrose with phosphoric acid: remarkable adsorbents for sulfamethoxazole removal. Royal Society of Chemistry Advances, 31, 17841–17851.
Tian, S., Zhang, C., Huang, D., Wang, R., Zeng, G., Yan, M., Xiong, W., Zhou, C., Cheng, M., Xue, W., Yang, Y. & Wang, W. (2020). Recent progress in sustainable technologies for adsorptive and reactive removal of sulfonamides. Chemical Engineering Journal, 389, 123423.
Tonucci, M. C., Gurgel, L. V. A. & Aquino, S. F. D. (2015). Activated carbons from agricultural byproducts (pine tree and coconut shell), coal, and carbon nanotubes as adsorbents for removal of sulfamethoxazole from spiked aqueous solutions: Kinetic and thermodynamic studies. Industrial Crops and Products, 74, 111–121.
Upadhyayula, V. K. K., Deng, S., Mitchell, M. C. & Smith, G. B. (2009). Application of carbon nanotube technology for removal of contaminants in drinking water: A review. Science of the Total Environment, 408, 1–13.
Wang, J. & Guo, X. (2020). Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere, 258, 127279.
Wang, J., Zhuan, R. & Chu, L. (2019). The occurrence, distribution and degradation of antibiotics by ionizing radiation: An overview. Science of the Total Environment, 646, 1385–1397.
Wei, J., Sun, W., Pan, W., Yu, X., Sun, G. & Jiang, H. (2017). Comparing the effects of different oxygen-containing functional groups on sulfonamides adsorption by carbon nanotubes: Experiments and theoretical calculation. Chemical Engineering Journal, 312, 167–179.
Wu, C. H. (2007a). Studies of the equilibrium and thermodynamics of the adsorption of Cu2+ onto as-produced and modified carbon nanotubes. Journal of Colloid and Interface Science, 311, 338–346.
Wu, C. H. (2007b). Adsorption of reactive dye onto carbon nanotubes: Equilibrium, kinetics and thermodynamics. Journal of Hazardous Materials, 144, 93–100.
Wu, J. T., Wu, C. H., Liu, C. Y. & Huang, W. J. (2015). Photodegradation of sulfonamide antimicrobial compounds (sulfadiazine, sulfamethizole, sulfamethoxazole and sulfathiazole) in various UV/oxidant systems. Water Science & Technology, 71(3), 412–417.
Xia, T., Yan, N., Li, S., Lin, Y. & Su, T. (2019). Adsorption of tylosin and sulfamethazine by carbon nanotubes and titanium dioxide nanoparticles: pH-dependent mechanisms. Colloids and Surfaces A, 581, 123851.
Yang, S. F., Lin, C. F., Lin, A. Y. & Hong, P. A. (2011). Sorption and biodegradation of sulfonamide antibiotics by activated sludge: Experimental assessment using batch data obtained under aerobic conditions. Water Research, 45, 3389–3397.
Yang, Q., Chen, G., Zhang, J. & Li, H. (2015). Adsorption of sulfamethazine by multi-walled carbon nanotubes: effects of aqueous solution chemistry. Royal Society of Chemistry Advances, 5, 25541–25549.
Yu, X., Zhang, L., Liang, M. & Sun, W. (2015). pH-dependent sulfonamides adsorption by carbon nanotubes with different surface oxygen contents. Chemical Engineering Journal, 279, 363–371.
Zhang, L., Song, X., Liu, X., Yang, L., Pan, F. & Lv, J. (2011). Studies on the removal of tetracycline by multi-walled carbon nanotubes. Chemical Engineering Journal, 178, 26–33.
Zhang, R., Zheng, X., Chen, B., Ma, J., Niu, X., Zhang, D., Lin, Z., Fu, M. & Zhou, S. (2020a). Enhanced adsorption of sulfamethoxazole from aqueous solution by Fe-impregnated graphited biochar. Journal of Cleaner Production, 256, 120662.
Zhang, X., Zhang, Y., Ngo, H. H., Guo, W., Wen. H., Zhang, D., Li, C. & Qi, L. (2020b). Characterization and sulfonamide antibiotics adsorption capacity of spent coffee grounds based biochar and hydrochar. Science of the Total Environment, 716, 137015.
Zhao, H., Liu, X., Cao, Z., Zhan, Y., Shi, X., Yang, Y., Zhou, J. & Xu, J. (2016). Adsorption behavior and mechanism of chloramphenicols, sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes. Journal of Hazardous Materials, 310, 235–245.
Zhuang, S., Zhu, X. & Wang, J. (2020). Adsorptive removal of plasticizer (dimethyl phthalate) and antibiotic (sulfamethazine) from municipal wastewater by magnetic carbon nanotubes. Journal of Molecular Liquids, 319, 114267.
張修齊,(2010)咖啡渣吸附銅離子之研究,私立大葉大學,碩士論文。