參考文獻
1.V. H. Leung, B. Darvell, Artificial salivas for in vitro studies of dental materials. Journal of dentistry 25, 475-484 (1997).
2.H. Spiekermann, K. Donath, T. Hassell, S. Jovanovic, J. Richter, Implantology: color atlas of dental medicine. Thieme Medical Publishers, Inc., New York 114, 261-264 (1995).
3.高聖凱, 臺灣醫療器材產業國際化布局之 策略行銷分析-以聯合骨科為例. 政治大學經營管理碩士學程 (EMBA) 學位論文, 1-92 (2007).4.林婉珍, 生物技術實驗器材產業分析與研究實例. 大同大學生物工程學系所學位論文, 1-80 (2012).
5.鄭岳華, 侯小妹, 楊兆雄, 多孔氫氧基磷灰石生物陶瓷的進展. 硅酸鹽通報 3, 20-24 (1995).
6.L. L. Hench, Bioceramics: from concept to clinic. Journal of the american ceramic society 74, 1487-1510 (1991).
7.K. De Groot, Bioceramics consisting of calcium phosphate salts. Biomaterials 1, 47-50 (1980).
8.C. E. Marino, S. R. Biaggio, R. C. Rocha-Filho, N. Bocchi, Voltammetric stability of anodic films on the Ti6Al4V alloy in chloride medium. Electrochimica acta 51, 6580-6583 (2006).
9.E. Neill, G. Awale, L. Daneshmandi, O. Umerah, K. W.-H. Lo, The roles of ions on bone regeneration. Drug discovery today 23, 879-890 (2018).
10.R. Doremus, Bioceramics. Journal of Materials Science 27, 285-297 (1992).
11.R. R. Behera, A. Hasan, M. R. Sankar, L. M. Pandey, Laser cladding with HA and functionally graded TiO2-HA precursors on Ti–6Al–4V alloy for enhancing bioactivity and cyto-compatibility. Surface and Coatings Technology 352, 420-436 (2018).
12.M. Long, H. Rack, Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 19, 1621-1639 (1998).
13.屠海令, 李腾飛, 馬飛, 中國關鍵基础材料發展現状及展望. 中國工程科學 19, 125-135 (2017).
14.寧聰琴, 周玉,醫用鈦合金的發展及研究現狀 (2002).
15.于振濤 et al., 生物醫用鈦合金的微纳化加工技術及最新進展. 中國有色金屬學報 20, 1008-1012 (2010).
16.Y. H. Jeong, H. C. Choe, et al. Hydroxyapatite precipitation on nanotubular films formed on Ti-6Al-4V alloy for biomedical applications. Thin Solid Films 549, 135-140(2013).
17.P. J. Arrazola et al., Machinability of titanium alloys (Ti6Al4V and Ti555. 3). Journal of materials processing technology 209, 2223-2230 (2009).
18.N. Ohtsu, Y. Nakamura, S. Semboshi, Thin hydroxyapatite coating on titanium fabricated by chemical coating process using calcium phosphate slurry. Surface and Coatings Technology 206, 2616-2621 (2012).
19.K. de Groot, Bioceramics Calcium Phosphate: 0. (CRC press, 2018).
20.D. Lakstein et al., Enhanced osseointegration of grit-blasted, NaOH-treated and electrochemically hydroxyapatite-coated Ti–6Al–4V implants in rabbits. Acta Biomaterialia 5, 2258-2269 (2009).
21.G. Scherer, C. Brinker, The physics and chemistry of sol-gel processing. Sol-Gel Science, (1990).
22.J. D. Wright, N. A. Sommerdijk, Sol-gel materials: chemistry and applications. (CRC press, 2018).
23.M. A. Aegerter, M. Mennig, Sol-gel technologies for glass producers and users. (Springer Science & Business Media, 2013).
24.W. Geffcken, E. Berger, Verfahren zur änderung des reflexionsvermögens optischer gläser. Deutsches Reichspatent, assigned to Jenaer Glaswerk Schott & Gen., Jena 736, 411 (1939).
25.康瀞引, 利用陽極氧化Ti6Al4V於人體模擬體液製備具生物相容性氫氧基磷灰石之研究,國立高雄應用科技大學研究所學位論文,1-99 (2013).
26.崔廣宇, 藉由仿生浸泡法在體外鍍製氫氧基磷灰石趨勢之探討. 成功大學製造工程研究所學位論文, 1-61 (2006).
27.王少鵬, 李爭顯, 杜繼紅,鈦合金表面等離子噴塗塗層材料的研究進展 (2013).
28.朱曉東, 米彦郁, 胡奈賽, 何家文, 膜基結合強度評定方法的探討(2002).
29.S. Ahmadi, I. Mohammadi, S. Sadrnezhaad, Hydroxyapatite based and anodic Titania nanotube biocomposite coatings: Fabrication, characterization and electrochemical behavior. Surface and Coatings Technology 287, 67-75 (2016).
30.R. Chakraborty, S. Sengupta, P. Saha, K. Das, S. Das, Synthesis of calcium hydrogen phosphate and hydroxyapatite coating on SS316 substrate through pulsed electrodeposition. Materials Science and Engineering: C 69, 875-883 (2016).
31.A. Kar, K. Raja, M. Misra, Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications. Surface and Coatings Technology 201, 3723-3731 (2006).
32.H. J. Kim, Y. H. Jeong, H. C. Choe, W. A. Brantley, Surface characteristics of hydroxyapatite coatings on nanotubular Ti–25Ta–xZr alloys prepared by electrochemical deposition. Surface and Coatings Technology 259, 274-280 (2014).
33.D. F. Williams, On the mechanisms of biocompatibility. Biomaterials 29, 2941-2953 (2008).
34.S. A. Hacking, J. D. Bobyn, M. Tanzer, J. J. Krygier, The osseous response to corundum blasted implant surfaces in a canine hip model. Clinical Orthopaedics and Related Research 364, 240-253 (1999).
35.C. Peraire et al., Biological stability and osteoconductivity in rabbit tibia of pulsed laser deposited hydroxylapatite coatings. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 77, 370-379 (2006).
36.M. Ma, W. Ye, X. X. Wang, Effect of supersaturation on the morphology of hydroxyapatite crystals deposited by electrochemical deposition on titanium. Materials Letters 62, 3875-3877 (2008).
37.K. Lee, Y. H. Jeong, Y. M. Ko, H. C. Choe, W. A. Brantley, Hydroxyapatite coating on micropore-formed titanium alloy utilizing electrochemical deposition. Thin Solid Films 549, 154-158 (2013).
38.C. M. Cotrut, A. Vladescu, M. Dinu, D. M. Vranceanu, Influence of deposition temperature on the properties of hydroxyapatite obtained by electrochemical assisted deposition. Ceramics International 44, 669-677 (2018).
39.N. Eliaz et al., The effect of surface treatment on the surface texture and contact angle of electrochemically deposited hydroxyapatite coating and on its interaction with bone-forming cells. Acta biomaterialia 5, 3178-3191 (2009).
40.N. Metoki et al., Hydroxyapatite coatings electrodeposited at near-physiological conditions. Materials Letters 119, 24-27 (2014).
41.D. H. He et al., HA coating fabricated by electrochemical deposition on modified Ti6Al4V alloy. Surface and Coatings Technology 301, 6-12 (2016).
42.T. Mokabber, L. Lu, P. Van Rijn, A. Vakis, Y. Pei, Crystal growth mechanism of calcium phosphate coatings on titanium by electrochemical deposition. Surface and Coatings Technology 334, 526-535 (2018).
43.Y. H. Jeong, E. J. Kim, W. A. Brantley, H. C. Choe, Morphology of hydroxyapatite nanoparticles in coatings on nanotube-formed Ti–Nb–Zr alloys for dental implants. Vacuum 107, 297-303 (2014).
44.N. N. C. Isa, Y. Mohd, N. Yury, Electrochemical deposition and characterization of hydroxyapatite (HAp) on titanium substrate. APCBEE Procedia 3, 46-52 (2012).
45.R. Schmidt et al., Electrochemical deposition of hydroxyapatite on beta-Ti-40Nb. Surface and Coatings Technology 294, 186-193 (2016).
46.J. L. Ong, D. L. Carnes, K. Bessho, Evaluation of titanium plasma-sprayed and plasma-sprayed hydroxyapatite implants in vivo. Biomaterials 25, 4601-4606 (2004).
47.N. Eliaz, Electrocrystallization of calcium phosphates. Israel Journal of Chemistry 48, 159-168 (2008).
48.鄭楷翰, 在AISI4140合金鋼上化成不同鋅錳比之磷酸鹽皮膜研究,國立高雄應用科技大學研究所學位論文,1-133 (2018).
49.M. Kuo, S. Yen, The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature. Materials Science and Engineering: C 20, 153-160 (2002).
50.A. Porter, L. Hobbs, V. B. Rosen, M. Spector, The ultrastructure of the plasma-sprayed hydroxyapatite–bone interface predisposing to bone bonding. Biomaterials 23, 725-733 (2002).
51.S. Overgaard, U. Bromose, M. Lind, C. Bünger, K. Søballe, The influence of crystallinity of the hydroxyapatite coating on the fixation of implants: mechanical and histomorphometric results. The Journal of bone and joint surgery. British volume 81, 725-731 (1999).
52.G. S. Schultz, G. Ladwig, A. Wysocki, Extracellular matrix: review of its roles in acute and chronic wounds. World wide wounds 2005, 1-18 (2005).
53.M. Wong, J. Eulenberger, R. Schenk, E. Hunziker, Effect of surface topology on the osseointegration of implant materials in trabecular bone. Journal of biomedical materials research 29, 1567-1575 (1995).
54.M. Svehla et al., Morphometric and mechanical evaluation of titanium implant integration: comparison of five surface structures. Journal of Biomedical Materials Research: 51, 15-22 (2000).
55.R. N. Wenzel, Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry 28, 988-994 (1936).
56.M. Qu, J. He, J. Zhang, in Biomimetics Learning from Nature. (IntechOpen, 2010).
57.A. Oyane et al., Preparation and assessment of revised simulated body fluids. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, 65, 188-195 (2003).
58.T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907-2915 (2006).
59.R. Chakraborty, P. Saha, A comparative study on surface morphology and electrochemical behaviour of hydroxyapatite-calcium hydrogen phosphate composite coating synthesized in-situ through electro chemical process under various deposition conditions. Surfaces and Interfaces 12, 160-167 (2018).