|
[1]H. Lin, M. Yang, X. Ru, G. Wang, S. Yin, F. Peng, C. Hong, M. Qu, J. Lu, L. Fang, C. Han, P. Procel, O. Isabella, P. Gao, Z. Li, and X. Xu, “Silicon heterojunction solar cells with up to 26.81 % efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers,” Nat. Energy, vol. 8, pp. 789–799, 2023. [2]M. H. Futscher, and B. Ehrler, “Efficiency limit of perovskite/Si tandem solar cells,” ACS Energy Lett., vol. 1, pp. 863−868, 2016. [3]S. Liu, V. P. Biju, Y. Qi, W. Chen, and Z. Liu, “Recent progress in the development of high efficiency inverted perovskite solar cells,” NPG Asia Mater., vol. 15, p. 27, 2023. [4]X. Y. Chin, D. Turkay, J. A. Steele, S. Tabean, S. Eswara, M. Mensi, P. Fiala, C. M. Wolff, A. Paracchino, K. Artuk, D. Jacobs, Q. Guesnay, F. Sahli, G. Andretta, M. Boccard, Q. Jeangros and C. Ballif, “Interface passivation for 31.25 %-efficient perovskite/silicon tandem solar cells,” Sci. (American Association for the Advancement of Science), vol. 381, pp. 59-63, 2023. [5]S. Akhil, S. Akash, A. Pasha, B. Kulkarni, M. Jalalah, M. Alsaiari, F. A. Harraz, and R. G. Balakrishna, “Review on perovskite silicon tandem solar cells: status and prospects 2T, 3T and 4T for real world conditions” Mater. Des., vol. 211, p. 110138, 2021. [6]B. Chen, N. Ren, Y. Li, L. Yan, S. Mazumdar, Y. Zhao, and X. Zhang, “Insights into the development of monolithic perovskite/silicon tandem solar cells,” Adv. Energy Mater., vol. 12, pp. 2003628-1-2003628-20, 2021. [7]F. Sahli, B. A. Kamino, J. Werner, M. Brauninger, B. Paviet-Salomon, L. Barraud, R. Monnard, J. P. Seif, A. Tomasi, Q. Jeangros, A. Hessler-Wyser, S. Wolf, M. Despeisse, S. Nicolay, B. Niesen, and C. Ballif, “Improved optics in monolithic perovskite/silicon tandem solar cells with a nanocrystalline silicon recombination junction,” Adv. Energy Mater., vol. 8, pp. 1701609-1-1701609-8, 2018. [8]J. Zheng, H. Mehrvarz, F. J. Ma, C. F. J. Lau, M. A. Green, S. Huang and A. W. Y. Ho-Baillie, “21.8 % efficient monolithic perovskite/homojunction-silicon tandem solar cell on 16 cm2,” ACS Energy Lett., vol. 3, p. 2299, 2018. [9]B. A. Kamino, B. Paviet-Salomon, S. J. Moon, N. Badel, J. Levrat, G. Christmann, A. Walter, A. Faes, L. Ding, J. J. Diaz Leon, A. Paracchino, M. Despeisse, C. Ballif, and S. Nicolay, “Low-temperature screen-printed metallization for the scale-up of two-terminal perovskite–silicon tandems,” ACS Energy Lett., vol. 2, pp. 3815-3821, 2019. [10]V. Malathy, S. Sivaranjani, V. S. Vidhya, J. J. Prince, T. Balasubramanian, C. Sanjeeviraja, and M. Jayachandran, “Amorphous to crystalline transition and optoelectronic properties of nanocrystalline indium tin oxide (ITO) films sputtered with high rf power at room temperature,” J. Non-Cryst. Solids, vol. 355, pp. 1508-1516, 2009. [11]J. H. Parka, C. Buurmaa, S. Sivananthana, R. Kodamab, W. Gaob, and T. A. Gessert, “The effect of post-annealing on indium tin oxide thin films bymagnetron sputtering,” Applied Surface Science, vol. 307, pp. 388-392, 2014. [12]J. H. Lee, “Effects of substrate temperature on electrical and optical properties ITO films deposited by r.f. magnetron sputtering,” J. Electroceram., vol. 23, pp. 554-558, 2009. [13]L. J. Meng, and M. P. dos-Santos, “Properties of indium tin oxide films prepared by rf reactive magnetron sputtering at different substrate temperature,” Thin Solid Films, vol. 322, pp. 56-62, 1998. [14]Y. Zhao, W. Ding, Y. Xiao, and P. Yang, “Manipulating the optoelectronic characteristic of AZO films by magnetron sputtering power,” Vac., vol. 210, p. 111849, 2023. [15]L. R. Cruz, C. Legnani, I. G. Matoso, C. L. Ferreira, and H. R. Moutinho, “Influence of pressure and annealing on the microstructural and electro-optical properties of RF magnetron sputtered ITO thin films,” Materials Research Bulletin, vol. 39, pp. 993-1003, 2004. [16]H. Parka, D. Kim, E. C. Choa, S. Q. Hussain, J. Park, D. Lim, S. Kimc, S. Dutta, Mallem Kumar, Y. Kima, and J. Yi, “Effect on the reduction of the barrier height in rear-emitter silicon heterojunction solar cells using Ar plasma-treated ITO film,” Curr. Appl Phys., vol. 20, pp. 219-225, 2020. [17]R. Das, K. Adhikary, and S. Ray, “The role of oxygen and hydrogen partial pressures on structural and optical properties of ITO films deposited by reactive rf-magnetron sputtering,” Appl. Surf. Sci., vol. 253, pp. 6068-6073, 2007 [18]J. Txintxurreta, E. G. Berasategui, R. Ortiz, O. Hernandez, L. Mendizabal and J. Barriga, “Indium tin oxide thin film deposition by magnetron sputtering at room temperature for the manufacturing of efficient transparent heaters,” Coat., vol. 11, p. 92, 2021. [19]D. Qiu, W. Duan, A. Lambertz, K. Bittkau, K. Qiu, U. Rau, and K. Ding, “Effect of oxygen and hydrogen flow ratio on indium tin oxide films in rear-junction silicon heterojunction solar cells,” Sol. Energy, vol. 231, pp. 578-585, 2021. [20]K. Zhang, F. Zhu, C. H. A. Huan, and A. T. S. Wee, “Effect of hydrogen partial pressure on optoelectronic properties of indium tin oxide thin films deposited by radio frequency magnetron sputtering method,” J. Appl. Phys., vol. 86, pp. 974-980, 1999. [21]M. Marikkannan, M. Subramanian, J. Mayandi, M. Tanemura, V. Vishnukanthan and J. M. Pearce ,“Effect of ambient combinations of argon, oxygen, and hydrogen on the properties of DC magnetron sputtered indium tin oxide films,” AIP Adv., vol. 5, pp. 017128-1-017128-10, 2015. [22]S. M. Kim, Y. S. Rim, M. J. Keum, and K. H. Kim, “Study on the electrical and optical properties of ITO and AZO thin film by oxygen gas flow rate,” J. Electroceram., vol. 23, pp. 341-345, 2009. [23]S. An, P. Chen, F. Hou, Q. Wang, H. Pan, X. Chen, X. Lu, Y. Zhao, Q. Huang, and X. Zhang, “Cerium doped indium oxide transparent electrode for semi-transparent perovskite and perovskite/silicon tandem solar cells,” Sol. Energy, vol. 196, pp. 409-418, 2020. [24]E. Kobayashi, Y. Watabe, T. Yamamoto, and Y. Yamada, “Cerium oxide and hydrogen co-doped indium oxide films for high-efficiency silicon heterojunction solar cells,” Sol. Energy Mater. Sol. Cells, vol. 149, pp.75-80, 2016. [25]S. I. Kim, S. H. Cho, S. R. Choi, M. C. Oh, J. H. Jang, and P. K. Song, “Crystallization and electrical properties of ITO:Ce thin films for flat panel display applications,” Thin Solid Films, vol. 517, pp. 4061-4064, 2009. [26]S. Kang, S. Cho, and P. Song, “Effect of cerium doping on the electrical properties of ultrathin indium tin oxide films for application in touch sensors,” Thin Solid Films, vol. 559, pp. 92-95, 2014. [27]E. Kobayashi, Y. Watabe, and T. Yamamoto, “High-mobility transparent conductive thin films of cerium-doped hydrogenated indium oxide,” Appl. Phys. Express, vol. 8, p. 15505, 2015. [28]J. Nomoto, T. Koida, I. Yamaguchi, H. Makino, Y. Kitanaka, T. Nakajima, and T. Tsuchiya, “Over 130 cm2/Vs Hall mobility of flexible transparent conductive In2O3 films by excimer-laser solid-phase crystallization” NPG Asia Mater., vol. 14, Issue 1, p. 76, 2022. [29]K. Dey, A. G. Aberle, S. V. Eek, and S. Venkataraj, “Superior optoelectrical properties of magnetron sputter-deposited cerium-doped indium oxide thin films for solar cell applications,” Ceram. Int., vol. 47, pp. 1798-1806, 2021. [30]J. Shi, F. Meng, J. Bao, Y. Liu, and Z. Liu, “Surface scattering effect on the electrical mobility of ultrathin Ce doped In2O3 film prepared at low temperature,” Mater. Lett., vol. 225, pp. 54-56, 2018
|