|
[1.]Watson, J. and K. Ihokura, The Stannic Oxide Gas sensor, Principles and Applications. 1994, CRC Press, Boca Raton, FL. [2.]Zhang, Y., et al., Capacitive behavior of graphene–ZnO composite film for supercapacitors. Journal of Electroanalytical Chemistry, 2009. 634(1): p. 68-71. [3.]Mills, A. and S. Le Hunte, An overview of semiconductor photocatalysis. Journal of photochemistry and photobiology A: Chemistry, 1997. 108(1): p. 1-35. [4.]Verma, V.P., et al., Large-area graphene on polymer film for flexible and transparent anode in field emission device. Applied Physics Letters, 2010. 96(20): p. 203108. [5.]Grätzel, M., Dye-sensitized solar cells. Journal of photochemistry and photobiology C: Photochemistry Reviews, 2003. 4(2): p. 145-153. [6.]Monroy, E., F. Omnès, and F. Calle, Wide-bandgap semiconductor ultraviolet photodetectors. Semiconductor science and technology, 2003. 18(4): p. R33. [7.]Gao, F., et al., Ultraviolet electroluminescence from Au-ZnO nanowire Schottky type light-emitting diodes. Applied Physics Letters, 2016. 108(26): p. 261103. [8.]He, J., et al., Enhanced field emission of ZnO nanowire arrays by the control of their structures. Materials Letters, 2018. 216: p. 182-184. [9.]Hsu, C.-L., L.-F. Chang, and T.-J. Hsueh, A dual-band photodetector based on ZnO nanowires decorated with Au nanoparticles synthesized on a glass substrate. RSC advances, 2016. 6(78): p. 74201-74208. [10.]Burgos, A., et al., Electrodeposition of ZnO nanorods as electron transport layer in a mixed halide perovskite solar cell. International Journal of Electrochemical Science, 2018. 13: p. 6577-6583. [11.]Deng, X., et al., ZnO enhanced NiO-based gas sensors towards ethanol. Materials Research Bulletin, 2017. 90: p. 170-174. [12.]Liu, J., et al., Highly sensitive and low detection limit of ethanol gas sensor based on hollow ZnO/SnO2 spheres composite material. Sensors and Actuators B: Chemical, 2017. 245: p. 551-559. [13.]Shi, Z.-F., et al., Photoluminescence performance enhancement of ZnO/MgO heterostructured nanowires and their applications in ultraviolet laser diodes. Physical Chemistry Chemical Physics, 2015. 17(21): p. 13813-13820. [14.]Ashrafi, A. and C. Jagadish, Review of zincblende ZnO: Stability of metastable ZnO phases. Journal of Applied Physics, 2007. 102(7): p. 4. [15.]Morkoç, H. and Ü. Özgür, Zinc oxide: fundamentals, materials and device technology. 2008: John Wiley & Sons. [16.]Özgür, Ü., et al., A comprehensive review of ZnO materials and devices. Journal of applied physics, 2005. 98(4): p. 11. [17.]Solozhenko, V.L., et al., Kinetics of the wurtzite-to-rock-salt phase transformation in ZnO at high pressure. The Journal of Physical Chemistry A, 2011. 115(17): p. 4354-4358. [18.]Chan, Y., et al., ZnSe nanowires epitaxially grown on GaP (111) substrates by molecular-beam epitaxy. Applied physics letters, 2003. 83(13): p. 2665-2667. [19.]Look, D.C., et al., Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy. Applied physics letters, 2002. 81(10): p. 1830-1832. [20.]Schubert, L., et al., Silicon nanowhiskers grown on< 111> Si substrates by molecular-beam epitaxy. Applied Physics Letters, 2004. 84(24): p. 4968-4970. [21.]Shaikh, S.K., et al., Chemical bath deposited ZnO thin film based UV photoconductive detector. Journal of Alloys and Compounds, 2016. 664: p. 242-249. [22.]Dalui, S., et al., Aligned Zinc Oxide nanorods by hybrid wet chemical route and their field emission properties. Thin Solid Films, 2008. 516(23): p. 8219-8226. [23.]Eskandari, M., V. Ahmadi, and S. Ahmadi, Low temperature synthesis of ZnO nanorods by using PVP and their characterization. Physica B: Condensed Matter, 2009. 404(14-15): p. 1924-1928. [24.]Polsongkram, D., et al., Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method. Physica B: Condensed Matter, 2008. 403(19-20): p. 3713-3717. [25.]Gunawan, O. and S. Guha, Characteristics of vapor–liquid–solid grown silicon nanowire solar cells. Solar Energy Materials and Solar Cells, 2009. 93(8): p. 1388-1393. [26.]Hejazi, S., H.M. Hosseini, and M.S. Ghamsari, The role of reactants and droplet interfaces on nucleation and growth of ZnO nanorods synthesized by vapor–liquid–solid (VLS) mechanism. Journal of Alloys and Compounds, 2008. 455(1-2): p. 353-357. [27.]Vergés, M.A., A. Mifsud, and C. Serna, Formation of rod-like zinc oxide microcrystals in homogeneous solutions. Journal of the Chemical Society, Faraday Transactions, 1990. 86(6): p. 959-963. [28.]Vayssieres, L., et al., Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. The Journal of Physical Chemistry B, 2001. 105(17): p. 3350-3352. [29.]Yang, Y., et al., ZnO nanowire and amorphous diamond nanocomposites and field emission enhancement. Chemical physics letters, 2005. 403(4-6): p. 248-251. [30.]Mensah, S.L., et al., Formation of single crystalline ZnO nanotubes without catalysts and templates. Applied physics letters, 2007. 90(11): p. 113108.
|