Arruti, A., Fernández-Olmo, I., & Irabien, Á. (2010). Evaluation of the contribution of local sources to trace metals levels in urban PM2. 5 and PM10 in the Cantabria region (Northern Spain). Journal of Environmental Monitoring, 12(7), 1451-1458.
Dockery, D. W. (2001). Epidemiologic evidence of cardiovascular effects of particulate air pollution. Environmental health perspectives, 109(suppl 4), 483-486.
Gelencsér, A., May, B., Simpson, D., Sánchez‐Ochoa, A., Kasper‐Giebl, A., Puxbaum, H., et al. (2007). Source apportionment of PM2. 5 organic aerosol over Europe: Primary/secondary, natural/anthropogenic, and fossil/biogenic origin. Journal of Geophysical Research: Atmospheres, 112(D23).
Gilmour, M. I., Daniels, M., McCrillis, R. C., Winsett, D., & Selgrade, M. K. (2001). Air pollutant-enhanced respiratory disease in experimental animals. Environmental health perspectives, 109(suppl 4), 619-622.
Gugamsetty, B., Wei, H., Liu, C.-N., Awasthi, A., Hsu, S.-C., Tsai, C.-J., et al. (2012). Source characterization and apportionment of PM10, PM2. 5 and PM0. 1 by using positive matrix factorization. Aerosol Air Qual. Res, 12, 476-491.
Han, Y.-J., Kim, H.-W., Cho, S.-H., Kim, P.-R., & Kim, W.-J. (2015). Metallic elements in PM2. 5 in different functional areas of Korea: Concentrations and source identification. Atmospheric Research, 153, 416-428.
Hassanvand, M. S., Naddafi, K., Faridi, S., Nabizadeh, R., Sowlat, M. H., Momeniha, F., et al. (2015). Characterization of PAHs and metals in indoor/outdoor PM10/PM2. 5/PM1 in a retirement home and a school dormitory. Science of the Total Environment, 527, 100-110.
He, Q., Yan, Y., Guo, L., Zhang, Y., Zhang, G., & Wang, X. (2017). Characterization and source analysis of water-soluble inorganic ionic species in PM2. 5 in Taiyuan city, China. Atmospheric Research, 184, 48-55.
Hsu, C.-Y., Chiang, H.-C., Chen, M.-J., Chuang, C.-Y., Tsen, C.-M., Fang, G.-C., et al. (2017). Ambient PM2. 5 in the residential area near industrial complexes: Spatiotemporal variation, source apportionment, and health impact. Science of the Total Environment, 590, 204-214.
Hsu, C.-Y., Chiang, H.-C., Lin, S.-L., Chen, M.-J., Lin, T.-Y., & Chen, Y.-C. (2016). Elemental characterization and source apportionment of PM10 and PM2. 5 in the western coastal area of central Taiwan. Science of the Total Environment, 541, 1139-1150.
Hueglin, C., Gehrig, R., Baltensperger, U., Gysel, M., Monn, C., & Vonmont, H. (2005). Chemical characterisation of PM2. 5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmospheric Environment, 39(4), 637-651.
Hwang, S.-L., Chi, M.-C., Guo, S.-E., Lin, Y.-C., Chou, C.-T., & Lin, C.-M. (2018). Seasonal variation and source apportionment of PM 2.5-bound trace elements at a coastal area in southwestern Taiwan. Environmental Science and Pollution Research, 25(9), 9101-9113.
Kampa, M., & Castanas, E. (2008). Human health effects of air pollution. Environmental Pollution, 151(2), 362-367.
Kim, S., Kim, T.-Y., Yi, S.-M., & Heo, J. (2018). Source apportionment of PM2. 5 using positive matrix factorization (PMF) at a rural site in Korea. Journal of environmental management, 214, 325-334.
Kopperud, R. J., Ferro, A. R., and Hildemann, L. M. (2004). Outdoor versus indoor contributions to indoor particulate matter (PM) determined by mass balance methods. Journal of the Air & Waste Management Association, 54(9), 1188-1196.
Kuo, C. Y., Lin, C. Y., Chiang, W. F., Ko, L. C., Wu, C. W., & Shang, W. L. (2006). Variations of chemical compositions in coarse aerosols and fine aerosols in two successive episodes. Environmental Toxicology and Chemistry: An International Journal, 25(8), 2059-2066.
Lee, S., Liu, W., Wang, Y., Russell, A. G., & Edgerton, E. S. (2008). Source apportionment of PM2. 5: Comparing PMF and CMB results for four ambient monitoring sites in the southeastern United States. Atmospheric Environment, 42(18), 4126-4137.
Liang, C.-S., Duan, F.-K., He, K.-B., & Ma, Y.-L. (2016). Review on recent progress in observations, source identifications and countermeasures of PM2.5. Environment International, 86, 150-170.
Liu, B., Wu, J., Zhang, J., Wang, L., Yang, J., Liang, D., et al. (2017). Characterization and source apportionment of PM2. 5 based on error estimation from EPA PMF 5.0 model at a medium city in China. Environmental Pollution, 222, 10-22.
Liu, W., Zhang, J., Zhang, L., Turpin, B. J., Weisel, C., Morandi, M., Stock, T., Colome, S., and Korn, L. (2006). Estimating contributions of indoor and outdoor sources to indoor carbonyl concentrations in three urban areas of the United States. Atmospheric Environment, 40(12), 2202-2214.
Meng, C., Wang, L., Zhang, F., Wei, Z., Ma, S., Ma, X., et al. (2016). Characteristics of concentrations and water-soluble inorganic ions in PM2. 5 in Handan City, Hebei province, China. Atmospheric Research, 171, 133-146.
Park, S. S., Bae, M. S., & Kim, Y. J. (2001). Chemical Composition and Source Apportionment of PM25 Particles in the Sihwa Area, Korea. Journal of the Air & Waste Management Association, 51(3), 393-405.
Park, S. S., & Kim, Y. J. (2005). Source contributions to fine particulate matter in an urban atmosphere. Chemosphere, 59(2), 217-226.
Peden, D. B. (2001). Air pollution in asthma: effect of pollutants on airway inflammation. Annals of Allergy, Asthma & Immunology, 87(6), 12-17.
Taghvaee, S., Sowlat, M. H., Mousavi, A., Hassanvand, M. S., Yunesian, M., Naddafi, K., et al. (2018). Source apportionment of ambient PM2. 5 in two locations in central Tehran using the Positive Matrix Factorization (PMF) model. Science of the Total Environment, 628, 672-686.
Thatcher, T. L., and Layton, D. W. (1995). Deposition, resuspension, and penetration of particles within a residence. Atmospheric Environment, 29(13), 1487-1497.
Wang, J., Hu, Z., Chen, Y., Chen, Z., & Xu, S. (2013). Contamination characteristics and possible sources of PM10 and PM2. 5 in different functional areas of Shanghai, China. Atmospheric Environment, 68, 221-229.
Wang, S., Hu, G., Yan, Y., Wang, S., Yu, R., & Cui, J. (2019). Source apportionment of metal elements in PM2. 5 in a coastal city in Southeast China: Combined Pb-Sr-Nd isotopes with PMF method. Atmospheric Environment, 198, 302-312.
Wang, Y., Zhuang, G., Zhang, X., Huang, K., Xu, C., Tang, A., et al. (2006). The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai. Atmospheric Environment, 40(16), 2935-2952.
Weisel, C. P., Zhang, J., Turpin, B. J., Morandi, M. T., Colome, S., Stock, T. H., Spektor, D. M., Korn, L., Winer, A. M., and Kwon, J. (2005). Relationships of Indoor, Outdoor, and Personal Air (RIOPA). Part I. Collection methods and descriptive analyses. Research Report (Health Effects Institute)(130 Pt 1), 1-107; discussion 109-127.
Yao, X., Chan, C. K., Fang, M., Cadle, S., Chan, T., Mulawa, P., et al. (2002). The water-soluble ionic composition of PM2. 5 in Shanghai and Beijing, China. Atmospheric Environment, 36(26), 4223-4234.
Zhou, J., Xing, Z., Deng, J., & Du, K. (2016). Characterizing and sourcing ambient PM2. 5 over key emission regions in China I: Water-soluble ions and carbonaceous fractions. Atmospheric Environment, 135, 20-30.
Zong, Z., Wang, X., Tian, C., Chen, Y., Fu, S., Qu, L., et al. (2018). PMF and PSCF based source apportionment of PM2. 5 at a regional background site in North China. Atmospheric Research, 203, 207-215.
江瑋哲. (2013). 大氣中細懸浮微粒化學組成及來源貢獻分析研究. 朝陽科技大學. Available from Airiti AiritiLibrary database. (2013年)
吳沛愉. (2014). 鋼鐵業煙道排放粒狀物之物化指紋特徵分析. (碩士), 國立中山大學, 高雄市.李宗璋. (2009). 金廈地區懸浮微粒物化特性分析及污染源解析探討. (碩士), 國立中山大學, 高雄市.李崑瑋. (2014). 台中都會區金屬元素特性及應用正矩陣因子法解 析大氣細懸浮微粒之污染來源及其貢獻量.
林聖達. (2011). 台西地區大氣懸浮微粒化學組成分析及特性之研究. (碩士), 環球科技大學, 雲林縣.邵承宗. (2003). 大陸沙塵暴對澎湖地區懸浮微粒特性之影響研究. (碩士), 國立中山大學, 高雄市.陳貞孜. (2012). 燃燒金紙、拜香產生空氣污染物之評估. (碩士), 嘉南藥理科技大學, 台南市.曾佑綸. (2016). 台灣南部及菲律賓北部大氣細懸浮微粒之化學成份特徵分析及交互影響探討. (碩士), 國立中山大學, 高雄市.楊宗謀. (2018). 高屏空品區高污染事件日PM2.5之化學指紋特徵及污染源解析. (碩士), 國立中山大學, 高雄市.鄭至庭. (2015). 南投縣埔里地區大氣懸浮微粒的化學組成及其污染源貢獻量解析. 中興大學. Available from Airiti AiritiLibrary database. (2015年)
賴立蓁. (2010). 鹿港和二林地區大氣懸浮微粒的化學組成及揚塵污染源指紋資料之建立. 中興大學環境工程學系所學位論文, 1-137.