|
[1] Chen, C.-H., 2007, “Forced Convection Heat Transfer in Microchannel Heat Sinks,” Int. J. Heat Mass Transfer, vol. 50, pp. 2182–2189. [2] X. Jiang, S. Zhang, Y. Li, C. Pan, 2020, “High performance heat sink with counter flow diverging microchannels,” Int. J. Heat Mass Transfer, vol. 162, Article No.: 120344. [3] Z. Tian, Z. Huang, S. Xu, K. Li, W. Gao, 2023, “Direct liquid cooling heat transfer in microchannel: Experimental results and correlations assessment,” Applied Thermal Engineering, vol. 223 , Article No.: 120020. [4] Julia Khandurina, Timothy E. McKnight, Stephen C. Jacobson, Larry C. Waters, Robert S. Foote, and J. Michael Ramsey, 2000, “Integrated System for Rapid PCR-Based DNA Analysis in Microfluidic Devices,” Analytical Chemistry, vol. 72, pp. 2995-3000. [5] X. Zhang, X. Wu, R. Peng, D. Li, 2015, “High performance heat sink with counter flow diverging microchannels,” Measurement, vol. 75, pp.23-28. [6] M. Chen, Y. Wang, X. Zhao, J. Zhang, Y. Peng, J. Bai, S. Li, D. Han, S. Ren, K. Qin, S. Li, T. Han, Z. Gao, 2022, “Target-responsive DNA hydrogel with microfluidic chip smart readout for quantitative point-of-care testing of creatine kinase MB,” Talanta, vol. 243, Article No.: 123338. [7] C. Zhao, E. Zholkovskij, J.H.Masliyah,C. Yang, 2008, “Analysis of Electroosmotic Flow of Power-Law Fluids in a Slit Microchannel,” Journal of Colloid and Interface Science, vol. 326, pp. 503-510. [8] G. Ocvirk, M. Munroe, T. Tang, R. Oleschuk, K. Westra, D.J. Harrison, 2000, “Electrokinetic Control of Fluid Flow in Native Poly (Dimethylsiloxane) Capillary Electrophoresis Devices,” Electrophoresis, vol. 21, pp. 107–115. [9] A.D. Stroock, S.K.W. Dertinger, A. Ajdari, I. Mezic, H.A. Stone, G.M Whitesides, 2002, “Chaotic Mixer for Microchannels,” Science, vol. 295, pp. 647– 651. [10] Ren, L., Sinton, D., Li, D., 2003, “Numerical Simulation of Microfluidic Injection Processes in Crossing Microchannels,” J. Micromech. Microeng., vol. 13, pp. 739–747. [11] G. Tang , D. Yan, C. Yang, H. Gong, C. Chai, Y. Lam, 2007, “Joule heating and its effects on electrokinetic transport of solutes in rectangular microchannels,” Sensors and Actuators A: Physical, vol. 139, pp. 221-232. [12] A. Babaie, A. Sadeghi, M.H. Sadeghi, 2011, “Combined electroosmotically and pressure driven flow of power-law fluids in a slit microchannel,” J. Nonnnewton Fluid Mech. , vol. 166, pp. 792-798. [13] A. Babaie, M.H. Sadeghi, A. Sadeghi, 2012, “Heat transfer characteristics of mixed electroosmotic and pressure driven flow of power-law fluids in a slit microchannel ,” Int. J. Therm. , vol. 53,pp. 71-79. [14] A. Elazhary, H.M. Soliman, 2009, “Analytical solutions of fluid flow and heat transfer in parallel-plate micro-channels at high zeta-potentials,” Int. J. Heat Mass Transf., vol. 52, pp. 4449–4458. [15] H. Yavari, A. Sadeghi, M. H. Saidi, S. Chakraborty, 2012, “Combined influences of viscous dissipation, non-uniform Joule heating and variable thermophysical properties on convective heat transfer in microtubes,” Int. J. Heat Mass Trans, vol. 55, pp. 762–772. [16] Y. Kang, C. Yang, X. Huang, 2002, “Electroosmotic Flow in a Capillary Annulus with High Zeta Potentials,” J. Colloid Interface Sci., vol. 55, pp. 762–772. [17] T. Zhang, M. Ren, J. Cui, X. Chen, Y. Wang, 2022, “Electroosmotic slip flow of Eyring fluid under high Zeta potential in a circular microchannel,” Chinese Journal of Physics, vol. 80, pp. 107-117. [18] N.K. Ranjit, G.C. Shit, 2017, “Entropy generation on electro-osmotic flow pumping by a uniform peristaltic wave under magnetic environment,” Heat Mass Transfer, vol. 128, pp. 649–660. [19] A. Sadeghi,M.H. Saidi, 2010, “Viscous dissipation effects on thermal transport characteristics of combined pressure and electroosmotically driven flow in microchannels,” Int. J. Heat Mass Trans, vol. 53, pp. 3782–2791. [20] A. Hernández, J. Arcos, J. Martínez-Trinidad, O. Bautista, S. Sánchez, F. Méndez, 2022, “Thermodiffusive effect on the local Debye-length in an electroosmotic flow of a viscoelastic fluid in a slit microchannel,” International Journal of Heat and Mass Transfer, vol. 187, Article No.: 122522. [21] G.M. Mala, D. Li, C. Werner, H.-J. Jacobasch, Y.B. Ning, 1997, “Flow characteristics of water through a microchannel between two parallel plates with electrokinetic effects,” Int. J. Heat Fluid Flow, vol. 18,pp.489–496. [22] K. Horiuchi, P. Dutta, 2004, “Joule heating effects in electroosmotically driven microchannel flows,” Int. J. Heat Mass Transfer, vol. 47,pp. 3085-3095. [23] N. Nekoubin, 2018, “Electroosmotic flow of power-law fluids in curved rectangular microchannel with high zeta potentials,” J. Nonnewton Fluid Mech.,vol. 260, pp. 54-68. [24] G.C. Shit, A. Mondal, A. Sinha, P.K. Kundu, 2016, “Electro-osmotically driven MHD flow and heat transfer in micro-channel,” Physica A , vol. 449,pp. 437-454. [25] C. H. Chen, 2009, “Thermal Transport Characteristics of Mixed Pressure and Electro-Osmotically Driven Flow in Micro- and Nanochannels With Joule Heating,” ASME J. Heat Transfer, vol. 131, Article No.: 022401. [26] H. S. Kwak, H. Kim, J. M. Hyun and Tae-Ho Song, 2009, “Thermal Control of Electroosmotic Flow in a Microchannel Through Temperature-Dependent Properties,” J. Colloid and Interface Science, vol. 335, pp. 123–129. [27] Y. Zhuang, Q. Zhu, 2015, “Numerical Study of Mixed Electroosmotic/ Pressure Driven Flow of Power-law Fluids in T-shaped Microchannels,” Procedia Engineering, vol. 126, pp. 740–744.
|