|
1.Acharya, L., Nayak, S., Pattnaik, S. P., Acharya, R., & Parida, K. (2020). Resurrection of boron nitride in p-n type-II boron nitride/B-doped-g-C3N4 nanocomposite during solid-state Z-scheme charge transfer path for the degradation of tetracycline hydrochloride. Journal of colloid and interface science, 566, 211-223. https://doi.org/https://doi.org/10.1016/j.jcis.2020.01.074 2.Adhikari, S., Lee, H. H., & Kim, D.-H. (2020). Efficient visible-light induced electron-transfer in z-scheme MoO3/Ag/C3N4 for excellent photocatalytic removal of antibiotics of both ofloxacin and tetracycline. Chemical Engineering Journal, 391, 123504. https://doi.org/https://doi.org/10.1016/j.cej.2019.123504 3.Adhikari, S., Lee, H. H., & Kim, D. H. (2020). Efficient visible-light induced electron-transfer in z-scheme MoO3/Ag/C3N4 for excellent photocatalytic removal of antibiotics of both ofloxacin and tetracycline. Chemical Engineering Journal, 391, 13, Article 123504. https://doi.org/10.1016/j.cej.2019.123504 4.Al-Hamadani, Y. A., Jung, C., Im, J.-K., Boateng, L. K., Flora, J. R., Jang, M., Heo, J., Park, C. M., & Yoon, Y. (2017). Sonocatalytic degradation coupled with single-walled carbon nanotubes for removal of ibuprofen and sulfamethoxazole. Chemical Engineering Science, 162, 300-308. 5.Amaly, N., El-Moghazy, A. Y., Nitin, N., Sun, G., & Pandey, P. K. (2022). Synergistic adsorption-photocatalytic degradation of tetracycline by microcrystalline cellulose composite aerogel dopped with montmorillonite hosted methylene blue. Chemical Engineering Journal, 430, 14, Article 133077. https://doi.org/10.1016/j.cej.2021.133077 6.Amaly, N., EL-Moghazy, A. Y., Nitin, N., Sun, G., & Pandey, P. K. (2022). Synergistic adsorption‑photocatalytic degradation of tetracycline by microcrystalline cellulose composite aerogel dopped with montmorillonite hosted methylene blue. Chemical Engineering Journal, 430, 133077. 7.Asadzadeh-Khaneghah, S., Habibi-Yangjeh, A., & Abedi, M. (2018). Decoration of carbon dots and AgCl over g-C3N4 nanosheets: Novel photocatalysts with substantially improved activity under visible light. Separation and Purification Technology, 199, 64-77. 8.Babu, P., Mohanty, S., Naik, B., & Parida, K. (2019). Serendipitous Assembly of Mixed Phase BiVO4 on B-Doped g-C3N4: An Appropriate p-n Heterojunction for Photocatalytic O2 evolution and Cr(VI) reduction. Inorganic Chemistry, 58(18), 12480-12491. https://doi.org/10.1021/acs.inorgchem.9b02309 9.Barka, N., Qourzal, S., Assabbane, A., Nounah, A., & Ait-Ichou, Y. (2008). Factors influencing the photocatalytic degradation of Rhodamine B by TiO2-coated non-woven paper. Journal of Photochemistry and Photobiology A: Chemistry, 195(2-3), 346-351. 10.Baumanis, C., & Bahnemann, D. W. (2008). TiO2 Thin Film Electrodes: Correlation between Photocatalytic Activity and Electrochemical Properties. The Journal of Physical Chemistry C, 112(48), 19097-19101. https://doi.org/10.1021/jp807655a 11.Bembibre, A., Benamara, M., Hjiri, M., Gomez, E., Alamri, H. R., Dhahri, R., & Serra, A. (2022). Visible-light driven sonophotocatalytic removal of tetracycline using Ca-doped ZnO nanoparticles. Chemical Engineering Journal, 427, 15, 132006. https://doi.org/10.1016/j.cej.2021.132006 12.Bembibre, A., Benamara, M., Hjiri, M., Gómez, E., Alamri, H. R., Dhahri, R., & Serra, A. (2022). Visible-light driven sonophotocatalytic removal of tetracycline using Ca-doped ZnO nanoparticles. Chemical Engineering Journal, 427, 132006. 13.Bhat, S. S. M., Lee, S. A., Lee, T. H., Kim, C., Park, J., Lee, T.-W., Kim, S. Y., & Jang, H. W. (2020). All-Solution-Processed BiVO4/TiO2 Photoanode with NiCo2O4 Nanofiber Cocatalyst for Enhanced Solar Water Oxidation. ACS Applied Energy Materials, 3(6), 5646-5656. 14.Bhunia, M. K., Yamauchi, K., & Takanabe, K. (2014). Harvesting solar light with crystalline carbon nitrides for efficient photocatalytic hydrogen evolution. Angewandte Chemie, 126(41), 11181-11185. 15.Bojdys, M. J., Müller, J. O., Antonietti, M., & Thomas, A. (2008). Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chemistry–A European Journal, 14(27), 8177-8182. 16.Bouissou-Schurtz, C., Houeto, P., Guerbet, M., Bachelot, M., Casellas, C., Mauclaire, A.-C., Panetier, P., Delval, C., & Masset, D. (2014). Ecological risk assessment of the presence of pharmaceutical residues in a French national water survey. Regulatory Toxicology and Pharmacology, 69(3), 296-303. 17.Bui, T. S., Bansal, P., Lee, B.-K., Mahvelati-Shamsabadi, T., & Soltani, T. (2020). Facile fabrication of novel Ba-doped g-C3N4 photocatalyst with remarkably enhanced photocatalytic activity towards tetracycline elimination under visible-light irradiation. Applied Surface Science, 506, 144184. 18.Cao, S., Fan, B., Feng, Y., Chen, H., Jiang, F., & Wang, X. (2018). Sulfur-doped g-C3N4 nanosheets with carbon vacancies: General synthesis and improved activity for simulated solar-light photocatalytic nitrogen fixation. Chemical Engineering Journal, 353, 147-156. 19.Cao, S., & Yu, J. (2014). g-C3N4-based photocatalysts for hydrogen generation. The Journal of Physical Chemistry Letters, 5(12), 2101-2107. 20.Cesaretti, A., Carlotti, B., Gentili, P. L., Clementi, C., Germani, R., & Elisei, F. (2014). Spectroscopic investigation of the pH controlled inclusion of doxycycline and oxytetracycline antibiotics in cationic micelles and their magnesium driven release. The Journal of Physical Chemistry B, 118(29), 8601-8613. 21.Chakrabarty, S., Mukherjee, A., & Basu, S. (2018). RGO-MoS2 Supported NiCo2O4 Catalyst toward Solar Water Splitting and Dye Degradation. ACS Sustainable Chemistry & Engineering, 6(4), 5238-5247. 22.Chen, D., Cheng, Y., Zhou, N., Chen, P., Wang, Y., Li, K., Huo, S., Cheng, P., Peng, P., & Zhang, R. (2020). Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. Journal of Cleaner Production, 268, 121725. 23.Chen, L., Zhu, D., Li, J., Wang, X., Zhu, J., Francis, P. S., & Zheng, Y. (2020). Sulfur and potassium co-doped graphitic carbon nitride for highly enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 273, 119050. 24.Chen, X., Li, C., Grätzel, M., Kostecki, R., & Mao, S. S. (2012). Nanomaterials for renewable energy production and storage. Chemical Society Reviews, 41(23), 7909-7937. 25.Chen, X., Oh, W.-D., Hu, Z.-T., Sun, Y.-M., Webster, R. D., Li, S.-Z., & Lim, T.-T. (2018). Enhancing sulfacetamide degradation by peroxymonosulfate activation with N-doped graphene produced through delicately-controlled nitrogen functionalization via tweaking thermal annealing processes. Applied Catalysis B: Environmental, 225, 243-257. 26.Chen, Y.-H., Wang, B.-K., & Hou, W.-C. (2021). Graphitic carbon nitride embedded with graphene materials towards photocatalysis of bisphenol A: The role of graphene and mediation of superoxide and singlet oxygen. Chemosphere, 278, 130334. 27.Cheng, H., Hou, J., Takeda, O., Guo, X.-M., & Zhu, H. (2015). A unique Z-scheme 2D/2D nanosheet heterojunction design to harness charge transfer for photocatalysis. Journal of Materials Chemistry A, 3(20), 11006-11013. 28.Chopra, I., & Roberts, M. (2001). Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and molecular biology reviews, 65(2), 232-260. 29.Chopra, S., & Kumar, D. (2020). Ibuprofen as an emerging organic contaminant in environment, distribution and remediation. Heliyon, 6(6), e04087. 30.Choudhary, V., Vellingiri, K., Thayyil, M. I., & Philip, L. (2021). Removal of antibiotics from aqueous solutions by electrocatalytic degradation [10.1039/D0EN01276A]. Environmental Science: Nano, 8(5), 1133-1176. https://doi.org/10.1039/D0EN01276A 31.Chromium, I. (1990). nickel, and welding. IARC Monograph on the Evaluation of Carcinogenic Risks to Humans. World Health Organization: Lyon, France. 32.Chu, S., Wang, Y., Guo, Y., Feng, J., Wang, C., Luo, W., Fan, X., & Zou, Z. (2013). Band Structure Engineering of Carbon Nitride: In Search of a Polymer Photocatalyst with High Photooxidation Property. ACS Catalysis, 3(5), 912-919. https://doi.org/10.1021/cs4000624 33.Conde-Cid, M., Ferreira-Coelho, G., Arias-Estevez, M., Alvarez-Esmoris, C., Nóvoa-Muñoz, J. C., Nunez-Delgado, A., Fernandez-Sanjurjo, M. J., & Alvarez-Rodriguez, E. (2019). Competitive adsorption/desorption of tetracycline, oxytetracycline and chlortetracycline on pine bark, oak ash and mussel shell. Journal of environmental management, 250, 109509. 34.Daghrir, R., & Drogui, P. (2013). Tetracycline antibiotics in the environment: a review. Environmental chemistry letters, 11(3), 209-227. 35.Dai, W., Jiang, L., Wang, J., Pu, Y., Zhu, Y., Wang, Y., & Xiao, B. (2020). Efficient and stable photocatalytic degradation of tetracycline wastewater by 3D Polyaniline/Perylene diimide organic heterojunction under visible light irradiation. Chemical Engineering Journal, 397, 125476. https://doi.org/https://doi.org/10.1016/j.cej.2020.125476 36.Daupor, H., & Wongnawa, S. (2014). Urchinlike Ag/AgCl photocatalyst: synthesis, characterization, and activity. Applied Catalysis A: General, 473, 59-69. 37.Daupor, H., & Wongnawa, S. (2014). Urchinlike Ag/AgCl photocatalyst: Synthesis, characterization, and activity [Article]. Applied Catalysis a-General, 473, 59-69. https://doi.org/10.1016/j.apcata.2013.12.036 38.Davarnejad, R., Soofi, B., Farghadani, F., & Behfar, R. (2018). Ibuprofen removal from a medicinal effluent: A review on the various techniques for medicinal effluents treatment. Environmental Technology & Innovation, 11, 308-320. 39.Deng, Y., Tang, L., Zeng, G., Wang, J., Zhou, Y., Wang, J., Tang, J., Wang, L., & Feng, C. (2018). Facile fabrication of mediator-free Z-scheme photocatalyst of phosphorous-doped ultrathin graphitic carbon nitride nanosheets and bismuth vanadate composites with enhanced tetracycline degradation under visible light. Journal of colloid and interface science, 509, 219-234. https://doi.org/https://doi.org/10.1016/j.jcis.2017.09.016 40.Di, J., Xia, J., Yin, S., Xu, H., He, M., Li, H., Xu, L., & Jiang, Y. (2013). A g-C3N4/BiOBr visible-light-driven composite: synthesis via a reactable ionic liquid and improved photocatalytic activity. RSC advances, 3(42), 19624-19631. 41.Di, J., Xia, J., Yin, S., Xu, H., Xu, L., Xu, Y., He, M., & Li, H. (2014). Preparation of sphere-like gC3N4/BiOI photocatalysts via a reactable ionic liquid for visible-light-driven photocatalytic degradation of pollutants. Journal of Materials Chemistry A, 2(15), 5340-5351. 42.Di, J., Zhu, M., Jamakanga, R., Gai, X., Li, Y., & Yang, R. (2020). Electrochemical activation combined with advanced oxidation on NiCo2O4 nanoarray electrode for decomposition of Rhodamine B. Journal of Water Process Engineering, 37, 101386. 43.Ding, Q., Zou, X., Ke, J., Dong, Y., Cui, Y., Lu, G., & Ma, H. (2022). S-scheme 3D/2D NiCo2O4@ g-C3N4 hybridized system for boosting hydrogen production from water splitting. Renewable Energy. 44.Ding, Q., Zou, X., Ke, J., Dong, Y., Cui, Y., Lu, G., & Ma, H. (2023). S-scheme 3D/2D NiCo2O4@g-C3N4 hybridized system for boosting hydrogen production from water splitting. Renewable Energy, 203, 677-685. https://doi.org/https://doi.org/10.1016/j.renene.2022.12.115 45.Doke, S. M., & Yadav, G. D. (2014). Process efficacy and novelty of titania membrane prepared by polymeric sol–gel method in removal of chromium (VI) by surfactant enhanced microfiltration. Chemical Engineering Journal, 255, 483-491. 46.Dong, C., Bao, Y., Sheng, T., Yi, Q., Zhu, Q., Shen, B., Xing, M., Lo, I. M. C., & Zhang, J. (2021). Singlet oxygen triggered by robust bimetallic MoFe/TiO2 nanospheres of highly efficacy in solar-light-driven peroxymonosulfate activation for organic pollutants removal. Applied Catalysis B: Environmental, 286, 119930. https://doi.org/https://doi.org/10.1016/j.apcatb.2021.119930 47.Dong, G., Zhang, Y., Pan, Q., & Qiu, J. (2014). A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 20, 33-50. 48.Dong, X. B., Ren, B. X., Sun, Z. M., Li, C. Q., Zhang, X. W., Kong, M. H., Zheng, S. L., & Dionysiou, D. D. (2019). Monodispersed CuFe2O4 nanoparticles anchored on natural kaolinite as highly efficient peroxymonosulfate catalyst for bisphenol A degradation. Applied Catalysis B-Environmental, 253, 206-217. https://doi.org/10.1016/j.apcatb.2019.04.052 49.Dung Nguyen, M., Binh Nguyen, T., Hai Tran, L., Giang Nguyen, T., Fatimah, I., Prasetyo Kuncoro, E., & Doong, R.-A. (2023). Z-scheme S, B co-doped g-C3N4 nanotube@MnO2 heterojunction with visible-light-responsive for enhanced photodegradation of diclofenac by peroxymonosulfate activation. Chemical Engineering Journal, 452, 139249. 50.Elbasuney, S., & Yehia, M. (2019). Thermal decomposition of ammonium perchlorate catalyzed with CuO nanoparticles. Defence Technology, 15(6), 868-874. 51.Fan, G., Ning, R., Yan, Z., Luo, J., Du, B., Zhan, J., Liu, L., & Zhang, J. (2021a). Double photoelectron-transfer mechanism in Ag−AgCl/WO3/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for trimethoprim degradation. Journal of Hazardous Materials, 403, 123964. 52.Fan, G., Ning, R., Yan, Z., Luo, J., Du, B., Zhan, J., Liu, L., & Zhang, J. (2021b). Double photoelectron-transfer mechanism in Ag−AgCl/WO3/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for trimethoprim degradation. Journal of Hazardous Materials, 403, 123964. https://doi.org/https://doi.org/10.1016/j.jhazmat.2020.123964 53.Fan, G., Zhan, J., Luo, J., Lin, J., Qu, F., Du, B., You, Y., & Yan, Z. (2021). Fabrication of heterostructured Ag/AgCl@ g-C3N4@UIO-66(NH2) nanocomposite for efficient photocatalytic inactivation of Microcystis aeruginosa under visible light. Journal of Hazardous Materials, 404, 124062. 54.Fan, X., Zhang, L., Cheng, R., Wang, M., Li, M., Zhou, Y., & Shi, J. (2015). Construction of graphitic C3N4-based intramolecular donor–acceptor conjugated copolymers for photocatalytic hydrogen evolution. ACS Catalysis, 5(9), 5008-5015. 55.Feng, C., Tang, L., Deng, Y., Wang, J., Liu, Y., Ouyang, X., Yang, H., Yu, J., & Wang, J. (2021). A novel sulfur-assisted annealing method of g-C3N4 nanosheet compensates for the loss of light absorption with further promoted charge transfer for photocatalytic production of H2 and H2O2. Applied Catalysis B: Environmental, 281, 119539. 56.Flippin, J. L., Huggett, D., & Foran, C. M. (2007). Changes in the timing of reproduction following chronic exposure to ibuprofen in Japanese medaka, Oryzias latipes. Aquatic Toxicology, 81(1), 73-78. 57.Franklin, E. C. (1922). The ammono carbonic acids. Journal of the American Chemical Society, 44(3), 486-509. 58.Gallucci, N., Hmoudah, M., Martinez, E., El-Qanni, A., Di Serio, M., Paduano, L., Vitiello, G., & Russo, V. (2022). Photodegradation of ibuprofen using CeO2 nanostructured materials: Reaction kinetics, modeling, and thermodynamics. Journal of Environmental Chemical Engineering, 10(3), 107866. 59.Gandamalla, A., Manchala, S., Anand, P., Fu, Y. P., & Shanker, V. (2021). Development of versatile CdMoO4/g-C3N4 nanocomposite for enhanced photoelectrochemical oxygen evolution reaction and photocatalytic dye degradation applications [Article]. Materials Today Chemistry, 19, 14, Article 100392. https://doi.org/10.1016/j.mtchem.2020.100392 60.Ganiyu, S. O., Martínez-Huitle, C. A., & Oturan, M. A. (2021). Electrochemical advanced oxidation processes for wastewater treatment: Advances in formation and detection of reactive species and mechanisms. Current opinion in electrochemistry, 27, 100678. 61.Gao, H., Yan, S., Wang, J., Huang, Y. A., Wang, P., Li, Z., & Zou, Z. (2013). Towards efficient solar hydrogen production by intercalated carbon nitride photocatalyst. Physical Chemistry Chemical Physics, 15(41), 18077-18084. 62.Gao, H., Yan, S., Wang, J., & Zou, Z. (2014). Ion coordination significantly enhances the photocatalytic activity of graphitic-phase carbon nitride. Dalton Transactions, 43(22), 8178-8183. 63.Geioushy, R. A., El-Sheikh, S. M., Azzam, A. B., Salah, B. A., & El-Dars, F. M. (2020). One-pot fabrication of BiPO4/Bi2S3 hybrid structures for visible -light driven reduction of hazardous Cr(VI). Journal of Hazardous Materials, 381, 12, Article 120955. https://doi.org/10.1016/j.jhazmat.2019.120955 64.Genzink, M. J., Kidd, J. B., Swords, W. B., & Yoon, T. P. (2021). Chiral photocatalyst structures in asymmetric photochemical synthesis. Chemical reviews, 122(2), 1654-1716. 65.Ghanbari, F., & Moradi, M. (2017). Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review. Chemical Engineering Journal, 310, 41-62. 66.Ghasemi, Z., Younesi, H., & Zinatizadeh, A. A. (2016). Kinetics and thermodynamics of photocatalytic degradation of organic pollutants in petroleum refinery wastewater over nano-TiO2 supported on Fe-ZSM-5. Journal of the Taiwan Institute of Chemical Engineers, 65, 357-366. 67.Giannakopoulou, T., Papailias, I., Todorova, N., Boukos, N., Liu, Y., Yu, J., & Trapalis, C. (2017). Tailoring the energy band gap and edges’ potentials of g-C3N4/TiO2 composite photocatalysts for NOx removal. Chemical Engineering Journal, 310, 571-580. 68.Gong, H., Chu, W., Huang, Y., Xu, L., Chen, M., & Yan, M. (2021). Solar photocatalytic degradation of ibuprofen with a magnetic catalyst: Effects of parameters, efficiency in effluent, mechanism and toxicity evolution. Environmental Pollution, 276, 116691. 69.Guo, F., Shi, W., Wang, H., Han, M., Guan, W., Huang, H., Liu, Y., & Kang, Z. (2018). Study on highly enhanced photocatalytic tetracycline degradation of type Ⅱ AgI/CuBi2O4 and Z-scheme AgBr/CuBi2O4 heterojunction photocatalysts. Journal of Hazardous Materials, 349, 111-118. 70.Guo, L., Zhang, K., Han, X., Zhao, Q., Wang, D., & Fu, F. (2019). 2D In-plane CuS/Bi2WO6 pn heterostructures with promoted visible-light-driven photo-Fenton degradation performance. Nanomaterials, 9(8), 1151. 71.Han, C.-H., Park, H.-D., Kim, S.-B., Yargeau, V., Choi, J.-W., Lee, S.-H., & Park, J.-A. (2020). Oxidation of tetracycline and oxytetracycline for the photo-Fenton process: Their transformation products and toxicity assessment. Water research, 172, 115514. 72.Haque, E., Jun, J. W., Talapaneni, S. N., Vinu, A., & Jhung, S. H. (2010). Superior adsorption capacity of mesoporous carbon nitride with basic CN framework for phenol. Journal of Materials Chemistry, 20(48), 10801-10803. 73.Hasija, V., Nguyen, V.-H., Kumar, A., Raizada, P., Krishnan, V., Khan, A. A. P., Singh, P., Lichtfouse, E., Wang, C., & Huong, P. T. (2021). Advanced activation of persulfate by polymeric g-C3N4 based photocatalysts for environmental remediation: a review. Journal of Hazardous Materials, 413, 125324. 74.Hasija, V., Raizada, P., Sudhaik, A., Sharma, K., Kumar, A., Singh, P., Jonnalagadda, S. B., & Thakur, V. K. (2019). Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: a review. Applied Materials Today, 15, 494-524. 75.Holmer, I., Salomonsen, C., Jorsal, S., Astrup, L. B., Jensen, V. F., Høg, B. B., & Pedersen, K. (2019). Antibiotic resistance in porcine pathogenic bacteria and relation to antibiotic usage. BMC veterinary research, 15(1), 1-13. 76.Hong, J., Xia, X., Wang, Y., & Xu, R. (2012). Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light. Journal of Materials Chemistry, 22(30), 15006-15012. 77.Hossini, H., Shafie, B., Niri, A. D., Nazari, M., Esfahlan, A. J., Ahmadpour, M., Nazmara, Z., Ahmadimanesh, M., Makhdoumi, P., Mirzaei, N., & Hoseinzadeh, E. (2022). A comprehensive review on human health effects of chromium: insights on induced toxicity. Environmental Science and Pollution Research, 29(47), 70686-70705. https://doi.org/10.1007/s11356-022-22705-6 78.Hu, C., Hung, W.-Z., Wang, M.-S., & Lu, P.-J. (2018). Phosphorus and sulfur codoped g-C3N4 as an efficient metal-free photocatalyst. Carbon, 127, 374-383. https://doi.org/https://doi.org/10.1016/j.carbon.2017.11.019 79.Hu, C., Lin, Y.-H., Yoshida, M., & Ashimura, S. (2021). Influence of phosphorus doping on triazole-based g-C3N5 nanosheets for enhanced photoelectrochemical and photocatalytic performance. ACS Applied Materials & Interfaces, 13(21), 24907-24915. 80.Hu, F., Luo, W., Liu, C., Dai, H., Xu, X., Yue, Q., Xu, L., Xu, G., Jian, Y., & Peng, X. (2021). Fabrication of graphitic carbon nitride functionalized P–CoFe2O4 for the removal of tetracycline under visible light: Optimization, degradation pathways and mechanism evaluation. Chemosphere, 274, 129783. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.129783 81.Hu, S., Zhou, F., Wang, L., & Zhang, J. (2011). Preparation of Cu2O/CeO2 heterojunction photocatalyst for the degradation of Acid Orange 7 under visible light irradiation. Catalysis Communications, 12(9), 794-797. 82.Huang, Z.-F., Song, J., Pan, L., Wang, Z., Zhang, X., Zou, J.-J., Mi, W., Zhang, X., & Wang, L. (2015). Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution. Nano Energy, 12, 646-656. 83.Inagaki, M., Tsumura, T., Kinumoto, T., & Toyoda, M. (2019). Graphitic carbon nitrides (g-C3N4) with comparative discussion to carbon materials. Carbon, 141, 580-607. 84.Islam, J. B., Furukawa, M., Tateishi, I., Kawakami, S., Katsumata, H., & Kaneco, S. (2019). Enhanced photocatalytic reduction of toxic Cr(VI) with Cu modified ZnO nanoparticles in presence of EDTA under UV illumination [Article]. Sn Applied Sciences, 1(10), 11, Article 1240. https://doi.org/10.1007/s42452-019-1282-x 85.Ismael, M. (2020). A review on graphitic carbon nitride (g-C3N4) based nanocomposites: Synthesis, categories, and their application in photocatalysis [Review]. Journal of Alloys and Compounds, 846, 30, Article 156446. https://doi.org/10.1016/j.jallcom.2020.156446 86.Jallouli, N., Pastrana-Martínez, L. M., Ribeiro, A. R., Moreira, N. F., Faria, J. L., Hentati, O., Silva, A. M., & Ksibi, M. (2018). Heterogeneous photocatalytic degradation of ibuprofen in ultrapure water, municipal and pharmaceutical industry wastewaters using a TiO2/UV-LED system. Chemical Engineering Journal, 334, 976-984. 87.Jeffries, K. M., Brander, S. M., Britton, M. T., Fangue, N. A., & Connon, R. E. (2015). Chronic exposures to low and high concentrations of ibuprofen elicit different gene response patterns in a euryhaline fish. Environmental Science and Pollution Research, 22(22), 17397-17413. 88.Jiang, J., Wang, X., Yue, C., Liu, S., Lin, Y., Xie, T., & Dong, S. (2021). Efficient photoactivation of peroxymonosulfate by Z-scheme nitrogen-defect-rich NiCo2O4/g-C3N4 for rapid emerging pollutants degradation. Journal of Hazardous Materials, 414, 125528. 89.Jiang, J., Wang, X., Zhang, C., Li, T., Lin, Y., Xie, T., & Dong, S. (2020). Porous 0D/3D NiCo2O4/g-C3N4 accelerate emerging pollutant degradation in PMS/vis system: Degradation mechanism, pathway and toxicity assessment. Chemical Engineering Journal, 397, 125356. 90.Jiang, Y., Sun, Z., Tang, C., Zhou, Y., Zeng, L., & Huang, L. (2019). Enhancement of photocatalytic hydrogen evolution activity of porous oxygen doped g-C3N4 with nitrogen defects induced by changing electron transition. Applied Catalysis B: Environmental, 240, 30-38. 91.Jiang, Z., Jia, C., Wang, B., Yang, P., & Gao, G. (2020). Hexagonal g-C3N4 nanotubes with Pt decorated surface towards enhanced photo- and electro-chemistry performance. Journal of Alloys and Compounds, 826, 154145. https://doi.org/https://doi.org/10.1016/j.jallcom.2020.154145 92.Jo, J. H., Shin, S. S., Jeon, S., Park, S.-J., Park, H., Park, Y.-I., & Lee, J.-H. (2022). Star polymer-assembled adsorptive membranes for effective Cr (VI) removal. Chemical Engineering Journal, 449, 137883. 93.Jo, J. H., Shin, S. S., Jeon, S., Park, S. J., Park, H., Park, Y. I., & Lee, J. H. (2022). Star polymer-assembled adsorptive membranes for effective Cr(VI) removal [Article]. Chemical Engineering Journal, 449, 11, Article 137883. https://doi.org/10.1016/j.cej.2022.137883 94.Jourshabani, M., Shariatinia, Z., & Badiei, A. (2018). Synthesis and characterization of novel Sm2O3/S-doped g-C3N4 nanocomposites with enhanced photocatalytic activities under visible light irradiation. Applied Surface Science, 427, 375-387. 95.Jun, Y. S., Lee, E. Z., Wang, X., Hong, W. H., Stucky, G. D., & Thomas, A. (2013). From melamine‐cyanuric acid supramolecular aggregates to carbon nitride hollow spheres. Advanced Functional Materials, 23(29), 3661-3667. 96.Kaliva, M., & Vamvakaki, M. (2020). Nanomaterials characterization. In Polymer science and nanotechnology (pp. 401-433). Elsevier. 97.Kamat, P. V. (2012). Manipulation of charge transfer across semiconductor interface. A criterion that cannot be ignored in photocatalyst design. The Journal of Physical Chemistry Letters, 3(5), 663-672. 98.Karimi-Maleh, H., Ayati, A., Ghanbari, S., Orooji, Y., Tanhaei, B., Karimi, F., Alizadeh, M., Rouhi, J., Fu, L., & Sillanpää, M. (2021). Recent advances in removal techniques of Cr (VI) toxic ion from aqueous solution: A comprehensive review. Journal of molecular liquids, 329, 115062. 99.Karmakar, S., Varma, S., & Behera, D. (2018). Investigation of structural and electrical transport properties of nano-flower shaped NiCo2O4 supercapacitor electrode materials. Journal of Alloys and Compounds, 757, 49-59. 100.Karpov, M., Seiwert, B., Mordehay, V., Reemtsma, T., Polubesova, T., & Chefetz, B. (2018). Transformation of oxytetracycline by redox-active Fe (III)-and Mn (IV)-containing minerals: Processes and mechanisms. Water research, 145, 136-145. 101.Keßler, D. N., Fokuhl, V. K., Petri, M. S., & Spielmeyer, A. (2019). Abiotic transformation products of tetracycline and chlortetracycline in salt solutions and manure. Chemosphere, 224, 487-493. 102.Khan, M. M., Kumar, S., Ahamed, M., Alrokayan, S. A., Alsalhi, M., Alhoshan, M., & Aldwayyan, A. (2011). Structural and spectroscopic studies of thin film of silver nanoparticles. Applied Surface Science, 257(24), 10607-10612. 103.Kim, J. S., Oh, J. W., & Woo, S. I. (2017). Improvement of the photocatalytic hydrogen production rate of g-C3N4 following the elimination of defects on the surface [Article; Proceedings Paper]. Catalysis Today, 293, 8-14. https://doi.org/10.1016/j.cattod.2016.11.018 104.Kohantorabi, M., Moussavi, G., Oulego, P., & Giannakis, S. (2021). Synthesis of a novel, ternary AgI/CeO2@g-C3N4 nanocomposite with exceptional stability and reusability for visible light-assisted photocatalytic reduction of hexavalent chromium. Applied Surface Science, 555, 13, Article 149692. https://doi.org/10.1016/j.apsusc.2021.149692 105.Kovacic, M., Papac, J., Kusic, H., Karamanis, P., & Bozic, A. L. (2020). Degradation of polar and non-polar pharmaceutical pollutants in water by solar assisted photocatalysis using hydrothermal TiO2-SnS2. Chemical Engineering Journal, 382, 122826. 106.Kovacic, M., Salaeh, S., Kusic, H., Suligoj, A., Kete, M., Fanetti, M., Stangar, U. L., Dionysiou, D. D., & Bozic, A. L. (2016). Solar-driven photocatalytic treatment of diclofenac using immobilized TiO2-based zeolite composites. Environmental Science and Pollution Research, 23(18), 17982-17994. https://doi.org/10.1007/s11356-016-6985-6 107.Kumar, A., Sharma, G., Kumari, A., Guo, C., Naushad, M., Vo, D.-V. N., Iqbal, J., & Stadler, F. J. (2021). Construction of dual Z-scheme g-C3N4/Bi4Ti3O12/Bi4O5I2 heterojunction for visible and solar powered coupled photocatalytic antibiotic degradation and hydrogen production: Boosting via I−/I3− and Bi3+/Bi5+ redox mediators. Applied Catalysis B: Environmental, 284, 119808. 108.Kumar, M., & Puri, A. (2012). A review of permissible limits of drinking water. Indian journal of occupational and environmental medicine, 16(1), 40. 109.Kumar, S., Ahlawat, W., Bhanjana, G., Heydarifard, S., Nazhad, M. M., & Dilbaghi, N. (2014). Nanotechnology-Based Water Treatment Strategies. Journal of Nanoscience and Nanotechnology, 14(2), 1838-1858. https://doi.org/10.1166/jnn.2014.9050 110.Lan, Y., Li, Z., Li, D., Xie, W., Yan, G., & Guo, S. (2020). Visible-light responsive Z-scheme Bi@β-Bi2O3/g-C3N4 heterojunction for efficient photocatalytic degradation of 2,3-dihydroxynaphthalene. Chemical Engineering Journal, 392, 123686. https://doi.org/https://doi.org/10.1016/j.cej.2019.123686 111.Lee, W.-r., Jun, Y.-S., Park, J., & Stucky, G. D. (2015). Crystalline poly (triazine imide) based g-CN as an efficient electrocatalyst for counter electrodes of dye-sensitized solar cells using a triiodide/iodide redox electrolyte. Journal of Materials Chemistry A, 3(48), 24232-24236. 112.Lei, Z.-d., Wang, J.-j., Wang, L., Yang, X.-y., Xu, G., & Tang, L. (2016). Efficient photocatalytic degradation of ibuprofen in aqueous solution using novel visible-light responsive graphene quantum dot/AgVO3 nanoribbons. Journal of Hazardous Materials, 312, 298-306. 113.Li, C. X., Wu, J. E., Peng, W., Fang, Z. D., & Liu, J. (2019). Peroxymonosulfate activation for efficient sulfamethoxazole degradation by Fe3O4/beta-FeOOH nanocomposites: Coexistence of radical and non-radical reactions. Chemical Engineering Journal, 356, 904-914. https://doi.org/10.1016/j.cej.2018.09.064 114.Li, G., Wang, B., Zhang, J., Wang, R., & Liu, H. (2019). Rational construction of a direct Z-scheme g-C3N4/CdS photocatalyst with enhanced visible light photocatalytic activity and degradation of erythromycin and tetracycline. Applied Surface Science, 478, 1056-1064. 115.Li, H., Shan, C., & Pan, B. (2019). Development of Fe-doped g-C3N4/graphite mediated peroxymonosulfate activation for degradation of aromatic pollutants via nonradical pathway. Science of the Total Environment, 675, 62-72. 116.Li, L., Zhang, Z., Bo, L., Cui, Y., Xu, Y., & Zhang, Z. (2020). In situ growth of TiO2 nanotube clusters, one-step octodecyl self-assembly and its corrosion resistance. Surface and Coatings Technology, 404, 126470. 117.Li, M., Zheng, Y., Liang, H., Zou, L., Sun, J., Zhang, Y., Qin, F., Liu, S., & Wang, Z. (2013). Molecular cloning and characterization of cat, gpx1 and Cu/Zn-sod genes in pengze crucian carp (Carassius auratus var. Pengze) and antioxidant enzyme modulation induced by hexavalent chromium in juveniles. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 157(3), 310-321. 118.Li, S., Jin, Z., Lai, W., Zhang, H., Wang, D., Song, S., & Zeng, T. (2021). Alkali and donor–acceptor bridged three-dimensional interpenetrating polymer networks boost photocatalytic performance by efficient electron delocalization and charge transfer. Applied Catalysis B: Environmental, 292, 120153. https://doi.org/https://doi.org/10.1016/j.apcatb.2021.120153 119.Li, X., Yu, J., Low, J., Fang, Y., Xiao, J., & Chen, X. (2015). Engineering heterogeneous semiconductors for solar water splitting. Journal of Materials Chemistry A, 3(6), 2485-2534. 120.Li, Y., Fang, Y., Cao, Z., Li, N., Chen, D., Xu, Q., & Lu, J. (2019). Construction of g-C3N4/PDI@MOF heterojunctions for the highly efficient visible light-driven degradation of pharmaceutical and phenolic micropollutants. Applied Catalysis B: Environmental, 250, 150-162. 121.Liang, C., & Su, H.-W. (2009). Identification of Sulfate and Hydroxyl Radicals in Thermally Activated Persulfate. Industrial & Engineering Chemistry Research, 48(11), 5558-5562. https://doi.org/10.1021/ie9002848 122.Liebig, J. v. (1834). About some nitrogen compounds. Ann. Pharm, 10(10), 10. 123.Lin, L., Ye, P., Cao, C., Jin, Q., Xu, G.-S., Shen, Y.-H., & Yuan, Y.-P. (2015). Rapid microwave-assisted green production of a crystalline polyimide for enhanced visible-light-induced photocatalytic hydrogen production. Journal of Materials Chemistry A, 3(19), 10205-10208. 124.Linic, S., Christopher, P., & Ingram, D. B. (2011). Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature materials, 10(12), 911-921. 125.Liu, H., Yang, Y., Sun, H., Zhao, L., & Liu, Y. (2018). Fate of tetracycline in enhanced biological nutrient removal process. Chemosphere, 193, 998-1003. 126.Liu, J., Wang, H., & Antonietti, M. (2016). Graphitic carbon nitride “reloaded”: emerging applications beyond (photo) catalysis. Chemical Society Reviews, 45(8), 2308-2326. 127.Liu, J., Zhang, J., Wang, D., Li, D., Ke, J., Wang, S., Liu, S., Xiao, H., & Wang, R. (2019). Highly dispersed NiCo2O4 nanodots decorated three-dimensional g-C3N4 for enhanced photocatalytic H2 generation. ACS Sustainable Chemistry & Engineering, 7(14), 12428-12438. 128.Liu, Q., Wang, X., Yang, Q., Zhang, Z., & Fang, X. (2018). Mesoporous g-C3N4 nanosheets prepared by calcining a novel supramolecular precursor for high-efficiency photocatalytic hydrogen evolution. Applied Surface Science, 450, 46-56. https://doi.org/https://doi.org/10.1016/j.apsusc.2018.04.175 129.Liu, S., Zhang, W., Zhu, P., Zuo, S., & Xia, H. (2021). Highly efficient and stable Ag-g-C3N4/AC photocatalyst for photocatalytic degradation, Cr (VI) reduction and bacteriostasis under visible light irradiation. Journal of Environmental Chemical Engineering, 9(5), 105879. 130.Liu, Y., Wang, S., Wu, Y., Chen, H., Shi, Y., Liu, M., & Dong, W. (2019). Degradation of ibuprofen by thermally activated persulfate in soil systems. Chemical Engineering Journal, 356, 799-810. 131.Long, M., Zhou, C., Xia, S., & Guadiea, A. (2017). Concomitant Cr (VI) reduction and Cr (III) precipitation with nitrate in a methane/oxygen-based membrane biofilm reactor. Chemical Engineering Journal, 315, 58-66. 132.Low, J., Yu, J., Jaroniec, M., Wageh, S., & Al‐Ghamdi, A. A. (2017). Heterojunction photocatalysts. Advanced Materials, 29(20), 1601694. 133.Lyth, S. M., Nabae, Y., Moriya, S., Kuroki, S., Kakimoto, M.-a., Ozaki, J.-i., & Miyata, S. (2009). Carbon nitride as a nonprecious catalyst for electrochemical oxygen reduction. The Journal of Physical Chemistry C, 113(47), 20148-20151. 134.Maeda, K. (2013). Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catalysis, 3(7), 1486-1503. 135.[Record #313 is using a reference type undefined in this output style.] 136.Mafa, P. J., Malefane, M. E., Idris, A. O., Liu, D., Gui, J., Mamba, B. B., & Kuvarega, A. T. (2022). Multi-elemental doped g-C3N4 with enhanced visible light photocatalytic activity: insight into naproxen degradation, kinetics, effect of electrolytes, and mechanism. Separation and Purification Technology, 282, 120089. 137.Majdoub, M., Anfar, Z., & Amedlous, A. (2020). Emerging chemical functionalization of g-C3N4: covalent/noncovalent modifications and applications. ACS nano, 14(10), 12390-12469. 138.Majhi, D., Mishra, A. K., Das, K., Bariki, R., & Mishra, B. (2021). Plasmonic Ag nanoparticle decorated Bi2O3/CuBi2O4 photocatalyst for expeditious degradation of 17α-ethinylestradiol and Cr (VI) reduction: Insight into electron transfer mechanism and enhanced photocatalytic activity. Chemical Engineering Journal, 413, 127506. 139.Majhi, D., Mishra, A. K., Das, K., Bariki, R., & Mishra, B. G. (2021). Plasmonic Ag nanoparticle decorated Bi2O3/CuBi2O4 photocatalyst for expeditious degradation of 17 alpha-ethinylestradiol and Cr(VI) reduction: Insight into electron transfer mechanism and enhanced photocatalytic activity [Article]. Chemical Engineering Journal, 413, 14, Article 127506. https://doi.org/10.1016/j.cej.2020.127506 140.[Record #537 is using a reference type undefined in this output style.] 141.Malik, A. H., & Iyer, P. K. (2017). Conjugated Polyelectrolyte Based Sensitive Detection and Removal of Antibiotics Tetracycline from Water. ACS Applied Materials & Interfaces, 9(5), 4433-4439. 142.Marchlewicz, A., Guzik, U., & Wojcieszyńska, D. (2015). Over-the-counter monocyclic non-steroidal anti-inflammatory drugs in environment—sources, risks, biodegradation. Water, Air, & Soil Pollution, 226(10), 1-13. 143.Marinho, B. A., Cristovao, R. O., Djellabi, R., Loureiro, J. M., Boaventura, R. A. R., & Vilar, V. J. P. (2017). Photocatalytic reduction of Cr(VI) over TiO2-coated cellulose acetate monolithic structures using solar light. Applied Catalysis B-Environmental, 203, 18-30. https://doi.org/10.1016/j.apcatb.2016.09.061 144.Marschall, R. (2014). Photocatalysis: Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity (Adv. Funct. Mater. 17/2014). Advanced Functional Materials, 24(17), 2420-2420. 145.Mendez-Arriaga, F., Esplugas, S., & Gimenez, J. (2010). Degradation of the emerging contaminant ibuprofen in water by photo-Fenton. Water research, 44(2), 589-595. 146.Meng, F., Qin, Y., Lu, J., Lin, X., Meng, M., Sun, G., & Yan, Y. (2021). Biomimetic design and synthesis of visible-light-driven g-C3N4 nanotube @polydopamine/NiCo-layered double hydroxides composite photocatalysts for improved photocatalytic hydrogen evolution activity. Journal of colloid and interface science, 584, 464-473. 147.Miranda, M. O., Cavalcanti, W. E. C., Barbosa, F. F., de Sousa, J. A., da Silva, F. I., Pergher, S. B., & Braga, T. P. (2021). Photocatalytic degradation of ibuprofen using titanium oxide: insights into the mechanism and preferential attack of radicals. RSC advances, 11(44), 27720-27733. 148.Morreale, B., & Shi, F. (2015). Novel materials for carbon dioxide mitigation technology. Elsevier. 149.Mortada, W. I., El-Naggar, A., Mosa, A., Palansooriya, K. N., Yousaf, B., Tang, R., Wang, S., Cai, Y., & Chang, S. X. (2023). Biogeochemical behaviour and toxicology of chromium in the soil-water-human nexus: A review. Chemosphere, 331, 138804. 150.Moscow, S., Kavinkumar, V., Sriramkumar, M., Jothivenkatachalam, K., Saravanan, P., Rajamohan, N., Vasseghian, Y., & Rajasimman, M. (2022). Impact of Erbium (Er) and Yttrium (Y) doping on BiVO4 crystal structure towards the enhancement of photoelectrochemical water splitting and photocatalytic performance. Chemosphere, 299, 134343. 151.Mousavi, S. E., Younesi, H., Bahramifar, N., Tamunaidu, P., & Karimi-Maleh, H. (2022). A novel route to the synthesis of α-Fe2O3@C@SiO2/TiO2 nanocomposite from the metal-organic framework as a photocatalyst for water treatment. Chemosphere, 297, 133992. 152.Nagajyothi, P. C., Pandurangan, M., Vattikuti, S., Tettey, C., Sreekanth, T., & Shim, J. (2017). Enhanced photocatalytic activity of Ag/g-C3N4 composite. Separation and Purification Technology, 188, 228-237. 153.Naresh, B., Krishna, T., Rao, S. S., & Kim, H.-J. (2019). Reagent induced morphological changes in NiCo2O4 electrode material for flexible supercapacitor. Materials Letters, 248, 218-221. 154.Naseri, A., Samadi, M., Pourjavadi, A., Moshfegh, A. Z., & Ramakrishna, S. (2017). Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: recent advances and future development directions [10.1039/C7TA05131J]. Journal of Materials Chemistry A, 5(45), 23406-23433. https://doi.org/10.1039/C7TA05131J 155.Nguyen, M. D., Nguyen, T. B., Tran, L. H., Nguyen, T. G., Fatimah, I., Kuncoro, E. P., & Doong, R. A. (2023). Z-scheme S, B co-doped g-C3N4 nanotube@MnO2 heterojunction with visible-light-responsive for enhanced photodegradation of diclofenac by peroxymonosulfate activation. Chemical Engineering Journal, 452, 14, Article 139249. 156.Nguyen, T.-B., Huang, C., Doong, R.-a., Chen, C.-W., & Dong, C.-D. (2023). In-situ immobilization of Ag/AgCl on sulfurized g-C3N4 nanosheet for enhancing visible-light driven photocatalysis toward simultaneous oxidation of tetracycline and reduction of Cr (VI) in water. Journal of Environmental Chemical Engineering, 109453. 157.Nguyen, T.-B., Le, V.-R., Huang, C. P., Chen, C.-W., Chen, L., & Dong, C.-D. (2022). Construction of ternary NiCo2O4/MnOOH/GO composite for peroxymonosulfate activation with enhanced catalytic activity toward ciprofloxacin degradation. Chemical Engineering Journal, 446, 137326. https://doi.org/https://doi.org/10.1016/j.cej.2022.137326 158.Nguyen, T. B., & Doong, R.-a. (2017). Heterostructured ZnFe2O4/TiO2 nanocomposites with a highly recyclable visible-light-response for bisphenol A degradation. RSC Advances, 7(79), 50006-50016. 159.Nguyen, T. B., Doong, R.-a., Huang, C., Chen, C.-W., & Dong, C.-D. (2019). Activation of persulfate by CoO nanoparticles loaded on 3D mesoporous carbon nitride (CoO@ meso-CN) for the degradation of methylene blue (MB). Science of the Total Environment, 675, 531-541. 160.Nguyen, T. B., Ho, P. N. T., Chen, C. W., Huang, C. P., Doong, R. A., & Dong, C. D. (2022). A Z-scheme NiCo2O4/S codoped 1D g-C3N4 heterojunction for solar-light-sensitive photocatalytic degradation of antibiotics in aqueous solutions exemplified by tetracycline. Environmental Science-Nano, 9(1), 229-242. https://doi.org/10.1039/d1en00888a 161.Nguyen, T. B., Huang, C., & Doong, R.-a. (2019). Enhanced catalytic reduction of nitrophenols by sodium borohydride over highly recyclable Au@ graphitic carbon nitride nanocomposites. Applied Catalysis B: Environmental, 240, 337-347. 162.Nguyen, T. B., Huang, C., Doong, R.-a., Chen, C.-W., & Dong, C.-D. (2021). CoO-3D ordered mesoporous carbon nitride (CoO@ mpgCN) composite as peroxymonosulfate activator for the degradation of sulfamethoxazole in water. Journal of Hazardous Materials, 401, 123326. 163.Nguyen, T. B., Huang, C. P., Doong, R. A., Chen, C. W., & Dong, C. D. (2020). Visible-light photodegradation of sulfamethoxazole (SMX) over Ag-P-codoped g-C3N4 (Ag-P@UCN) photocatalyst in water [Article]. Chemical Engineering Journal, 384, 13, Article 123383. https://doi.org/10.1016/j.cej.2019.123383 164.Nguyen, V. T., Nguyen, T. B., Chen, C. W., Hung, C. M., Vo, T. D. H., Chang, J. H., & Dong, C. D. (2019). Influence of pyrolysis temperature on polycyclic aromatic hydrocarbons production and tetracycline adsorption behavior of biochar derived from spent coffee ground [Article]. Bioresource Technology, 284, 197-203. https://doi.org/10.1016/j.biortech.2019.03.096 165.Niu, P., Yang, Y., Jimmy, C. Y., Liu, G., & Cheng, H.-M. (2014). Switching the selectivity of the photoreduction reaction of carbon dioxide by controlling the band structure of a gC3N4 photocatalyst. Chemical Communications, 50(74), 10837-10840. 166.Oladipo, A. A. (2018). MIL-53 (Fe)-based photo-sensitive composite for degradation of organochlorinated herbicide and enhanced reduction of Cr(VI) [Article]. Process Safety and Environmental Protection, 116, 413-423. https://doi.org/10.1016/j.psep.2018.03.011 167.Ong, W.-J., Tan, L.-L., Ng, Y. H., Yong, S.-T., & Chai, S.-P. (2016). Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chemical reviews, 116(12), 7159-7329. 168.Ouyang, Z. Z., Yang, C., Lu, G. N., Yao, Q., He, J. H., Wang, H. M., Zhang, Z. F., Yang, J. J., Liu, Y. J., Jiang, Y., Deng, Y. R., & Dang, Z. (2020). Chromate(VI)-induced homogeneous oxidation and photolysis of aqueous tetracycline: Kinetics and mechanism. Chemical Engineering Journal, 379, 12, Article 122276. https://doi.org/10.1016/j.cej.2019.122276 169.Pakade, V. E., Tavengwa, N. T., & Madikizela, L. M. (2019). Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods. RSC advances, 9(45), 26142-26164. 170.Palanivel, B., & Mani, A. (2020). Conversion of a Type-II to a Z-Scheme Heterojunction by Intercalation of a 0D Electron Mediator between the Integrative NiFe2O4/g-C3N4 Composite Nanoparticles: Boosting the Radical Production for Photo-Fenton Degradation. ACS Omega, 5(31), 19747-19759. https://doi.org/10.1021/acsomega.0c02477 171.Pan, H., Zhang, Y.-W., Shenoy, V. B., & Gao, H. (2011). Ab initio study on a novel photocatalyst: functionalized graphitic carbon nitride nanotube. ACS Catalysis, 1(2), 99-104. 172.Pan, Y., Liu, X., Zhang, W., Shao, B., Liu, Z., Liang, Q., Wu, T., He, Q., Huang, J., Peng, Z., Liu, Y., & Zhao, C. (2022). Bifunctional template-mediated synthesis of porous ordered g-C3N4 decorated with potassium and cyano groups for effective photocatalytic H2O2 evolution from dual-electron O2 reduction. Chemical Engineering Journal, 427, 132032. 173.Papailias, I., Giannakopoulou, T., Todorova, N., Demotikali, D., Vaimakis, T., & Trapalis, C. (2015). Effect of processing temperature on structure and photocatalytic properties of g-C3N4. Applied Surface Science, 358, 278-286. 174.Papailias, I., Todorova, N., Giannakopoulou, T., Ioannidis, N., Boukos, N., Athanasekou, C. P., Dimotikali, D., & Trapalis, C. (2018). Chemical vs thermal exfoliation of g-C3N4 for NOx removal under visible light irradiation. Applied Catalysis B: Environmental, 239, 16-26. 175.Paragas, L. K. B., de Luna, M. D. G., & Doong, R.-A. (2018). Rapid removal of sulfamethoxazole from simulated water matrix by visible-light responsive iodine and potassium co-doped graphitic carbon nitride photocatalysts. Chemosphere, 210, 1099-1107. 176.Parr, R. G., & Pearson, R. G. (1983). Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society, 105(26), 7512-7516. 177.Patnaik, S., Das, K. K., Mohanty, A., & Parida, K. (2018). Enhanced photo catalytic reduction of Cr (VI) over polymer-sensitized g-C3N4/ZnFe2O4 and its synergism with phenol oxidation under visible light [Article]. Catalysis Today, 315, 52-66. https://doi.org/10.1016/j.cattod.2018.04.008 178.Pauling, L., & Sturdivant, J. (1937). The structure of cyameluric acid, hydromelonic acid and related substances. Proceedings of the National Academy of Sciences, 23(12), 615-620. 179.Pillai, S. C., McGuinness, N. B., Byrne, C., Han, C., Lalley, J., Nadagouda, M., Falaras, P., Kontos, A. G., Gracia-Pinilla, M. A., & OShea, K. (2017). Photocatalysis as an effective advanced oxidation process. Advanced oxidation processes for water treatment: fundamentals and applications, 333-381. 180.Pourshirband, N., Nezamzadeh-Ejhieh, A., & Mirsattari, S. N. (2021). The CdS/g-C3N4 nano-photocatalyst: Brief characterization and kinetic study of photodegradation and mineralization of methyl orange. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 248, 10, Article 119110. https://doi.org/10.1016/j.saa.2020.119110 181.Pulicharla, R., Brar, S. K., Rouissi, T., Auger, S., Drogui, P., Verma, M., & Surampalli, R. Y. (2017). Degradation of chlortetracycline in wastewater sludge by ultrasonication, Fenton oxidation, and ferro-sonication. Ultrasonics sonochemistry, 34, 332-342. 182.Quero-Pastor, M., Valenzuela, A., Quiroga, J. M., & Acevedo, A. (2014). Degradation of drugs in water with advanced oxidation processes and ozone. Journal of environmental management, 137, 197-203. 183.Raziq, F., Hayat, A., Humayun, M., Mane, S. K. B., Faheem, M. B., Ali, A., Zhao, Y., Han, S., Cai, C., & Li, W. (2020). Photocatalytic solar fuel production and environmental remediation through experimental and DFT based research on CdSe-QDs-coupled P-doped-g-C3N4 composites. Applied Catalysis B: Environmental, 270, 118867. 184.Reddy, C. V., Reddy, I. N., Koutavarapu, R., Reddy, K. R., Saleh, T. A., Aminabhavi, T. M., & Shim, J. (2022). Novel edge-capped ZrO2 nanoparticles onto V2O5 nanowires for efficient photosensitized reduction of chromium (Cr (VI)), photoelectrochemical solar water-splitting, and electrochemical energy storage applications. Chemical Engineering Journal, 430, 11, Article 132988. https://doi.org/10.1016/j.cej.2021.132988 185.Reddy, P. A. K., Reddy, P. V. L., Kwon, E., Kim, K. H., Akter, T., & Kalagara, S. (2016). Recent advances in photocatalytic treatment of pollutants in aqueous media [Review]. Environment International, 91, 94-103. https://doi.org/10.1016/j.envint.2016.02.012 186.Redemann, C., & Lucas, H. (1940). Some derivatives of cyameluric acid and probable structures of melam, melem and melon. Journal of the American Chemical Society, 62(4), 842-846. 187.Ren, Z., Romar, H., Varila, T., Xu, X., Wang, Z., Sillanpää, M., & Leiviskä, T. (2021). Ibuprofen degradation using a Co-doped carbon matrix derived from peat as a peroxymonosulphate activator. Environmental Research, 193, 110564. 188.Ruan, D., Kim, S., Fujitsuka, M., & Majima, T. (2018). Defects rich g-C3N4 with mesoporous structure for efficient photocatalytic H2 production under visible light irradiation. Applied Catalysis B: Environmental, 238, 638-646. 189.Sahu, R. S., & Doong, R.-a. (2020). Functionalized Fe/Ni@ gC3N4 nanostructures for enhanced trichloroethylene dechlorination and successive oxygen reduction reaction activity. Environmental Science: Nano, 7(11), 3469-3481. 190.Salaeh, S., Perisic, D. J., Biosic, M., Kusic, H., Babic, S., Stangar, U. L., Dionysiou, D. D., & Bozic, A. L. (2016). Diclofenac removal by simulated solar assisted photocatalysis using, TiO2-based zeolite catalyst; mechanisms, pathways and environmental aspects. Chemical Engineering Journal, 304, 289-302. https://doi.org/10.1016/j.cej.2016.06.083 191.Sanati, S., & Rezvani, Z. (2019). g-C3N4 nanosheet@ CoAl-layered double hydroxide composites for electrochemical energy storage in supercapacitors. Chemical Engineering Journal, 362, 743-757. 192.Schwinghammer, K., Mesch, M. B., Duppel, V., Ziegler, C., Senker, J. r., & Lotsch, B. V. (2014). Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. Journal of the American Chemical Society, 136(5), 1730-1733. 193.Shalom, M., Inal, S., Fettkenhauer, C., Neher, D., & Antonietti, M. (2013). Improving carbon nitride photocatalysis by supramolecular preorganization of monomers. Journal of the American Chemical Society, 135(19), 7118-7121. 194.Shanker, A. K. (2019). Chromium: environmental pollution, health effects and mode of action. 195.Shawky, A., Alhaddad, M., Mohamed, R., Awwad, N. S., & Ibrahium, H. A. (2020). Magnetically separable and visible light-active Ag/NiCo2O4 nanorods prepared by a simple route for superior photodegradation of atrazine in water. Progress in Natural Science: Materials International, 30(2), 160-167. 196.Shi, F., Chen, L., Chen, M., & Jiang, D. (2015). A gC3 N4/nanocarbon/ZnIn2S4 nanocomposite: an artificial Z-scheme visible-light photocatalytic system using nanocarbon as the electron mediator. Chemical Communications, 51(96), 17144-17147. 197.Shi, L., Liang, L., Wang, F., Ma, J., & Sun, J. (2014). Polycondensation of guanidine hydrochloride into a graphitic carbon nitride semiconductor with a large surface area as a visible light photocatalyst [10.1039/C4CY00411F]. Catalysis Science & Technology, 4(9), 3235-3243. https://doi.org/10.1039/C4CY00411F 198.Shi, W., Liu, C., Li, M., Lin, X., Guo, F., & Shi, J. (2020). Fabrication of ternary Ag3PO4/Co3(PO4)2/g-C3N4 heterostructure with following Type II and Z-Scheme dual pathways for enhanced visible-light photocatalytic activity. Journal of Hazardous Materials, 389, 121907. https://doi.org/https://doi.org/10.1016/j.jhazmat.2019.121907 199.Shi, W., Ren, H., Li, M., Shu, K., Xu, Y., Yan, C., & Tang, Y. (2020). Tetracycline removal from aqueous solution by visible-light-driven photocatalytic degradation with low cost red mud wastes. Chemical Engineering Journal, 382, 122876. https://doi.org/https://doi.org/10.1016/j.cej.2019.122876 200.Shi, Y., Li, J., Wan, D., Huang, J., & Liu, Y. (2020). Peroxymonosulfate-enhanced photocatalysis by carbonyl-modified g-C3N4 for effective degradation of the tetracycline hydrochloride. Science of the Total Environment, 749, 142313. 201.Shwetharani, R., Fernando, C. A. N., & Balakrishna, G. R. (2015). Excellent hydrogen evolution by a multi approach via structure–property tailoring of titania [10.1039/C5RA04578A]. RSC advances, 5(49), 39122-39130. https://doi.org/10.1039/C5RA04578A 202.Sinha, V., Pakshirajan, K., & Chaturvedi, R. (2018). Chromium tolerance, bioaccumulation and localization in plants: an overview. Journal of environmental management, 206, 715-730. 203.Solís, R. R., Dinc, Ö., Fang, G., Nadagouda, M. N., & Dionysiou, D. D. (2021). Activation of inorganic peroxides with magnetic graphene for the removal of antibiotics from wastewater. Environmental Science: Nano, 8(4), 960-977. 204.Sordello, F., Berruti, I., Gionco, C., Paganini, M. C., Calza, P., & Minero, C. (2019). Photocatalytic performances of rare earth element-doped zinc oxide toward pollutant abatement in water and wastewater. Applied Catalysis B-Environmental, 245, 159-166. https://doi.org/10.1016/j.apcatb.2018.12.053 205.Sordello, F., Berruti, I., Gionco, C., Paganini, M. C., Calza, P., & Minero, C. (2019). Photocatalytic performances of rare earth element-doped zinc oxide toward pollutant abatement in water and wastewater. Applied Catalysis B: Environmental, 245, 159-166. 206.Stewart, I. I., & Olesik, J. W. (2000). Investigation of Cr (III) hydrolytic polymerisation products by capillary electrophoresis–inductively coupled plasma-mass spectrometry. Journal of Chromatography a, 872(1-2), 227-246. 207.Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry: chemical Equilibria and rates in natural waters {environmental science and technology}. Wiley. 208.Suligoj, A., Kete, M., Cernigoj, U., Fresno, F., & Stangar, U. L. (2021). Synergism in TiO2 photocatalytic ozonation for the removal of dichloroacetic acid and thiacloprid. Environmental Research, 197, 9, Article 110982. 209.Sun, J., Xu, J., Grafmueller, A., Huang, X., Liedel, C., Algara-Siller, G., Willinger, M., Yang, C., Fu, Y., & Wang, X. (2017). Self-assembled carbon nitride for photocatalytic hydrogen evolution and degradation of p-nitrophenol. Applied Catalysis B: Environmental, 205, 1-10. 210.Sun, S. Q., Wu, Y. C., Zhu, J. F., Lu, C. J., Sun, Y., Wang, Z., & Chen, J. (2022). Stabilizing plasma-induced highly nitrogen-deficient g-C3N4 by heteroatom-refilling for excellent lithium-ion battery anodes. Chemical Engineering Journal, 427, 7, Article 131032. https://doi.org/10.1016/j.cej.2021.131032 211.Sundaramoorthy, P., Chidambaram, A., Ganesh, K. S., Unnikannan, P., & Baskaran, L. (2010). Chromium stress in paddy:(i) nutrient status of paddy under chromium stress;(ii) phytoremediation of chromium by aquatic and terrestrial weeds. Comptes rendus biologies, 333(8), 597-607. 212.Suyana, P., Ganguly, P., Nair, B. N., Mohamed, A. P., Warrier, K. G. K., & Hareesh, U. S. (2017). Co3O4–C3N4 p–n nano-heterojunctions for the simultaneous degradation of a mixture of pollutants under solar irradiation [10.1039/C6EN00410E]. Environmental Science: Nano, 4(1), 212-221. https://doi.org/10.1039/C6EN00410E 213.Tan, J. Z., Nursam, N. M., Xia, F., Sani, M.-A., Li, W., Wang, X., & Caruso, R. A. (2017). High-performance coral reef-like carbon nitrides: synthesis and application in photocatalysis and heavy metal ion adsorption. ACS Applied Materials & Interfaces, 9(5), 4540-4547. 214.Teter, D. M., & Hemley, R. J. (1996). Low-compressibility carbon nitrides. Science, 271(5245), 53-55. 215.Theopold, K. H. (2006). Chromium: Inorganic & Coordination Chemistry. Encyclopedia of Inorganic Chemistry. 216.Thomas, A., Fischer, A., Goettmann, F., Antonietti, M., Müller, J.-O., Schlögl, R., & Carlsson, J. M. (2008). Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry, 18(41), 4893-4908. 217.Tonda, S., Kumar, S., Bhardwaj, M., Yadav, P., & Ogale, S. (2018). g-C3N4/NiAl-LDH 2D/2D Hybrid Heterojunction for High-Performance Photocatalytic Reduction of CO2 into Renewable Fuels. ACS Applied Materials & Interfaces, 10(3), 2667-2678. https://doi.org/10.1021/acsami.7b18835 218.Umeshbabu, E., Hari Krishna Charan, P., Justin, P., & Ranga Rao, G. (2020). Hierarchically organized NiCo2O4 microflowers anchored on multiwalled carbon nanotubes: efficient bifunctional electrocatalysts for oxygen and hydrogen evolution reactions. ChemPlusChem, 85(1), 183-194. 219.Upadhyay, R. K., Soin, N., & Roy, S. S. (2014). Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: a review. RSC advances, 4(8), 3823-3851. 220.Vasilchenko, D., Zhurenok, A., Saraev, A., Gerasimov, E., Cherepanova, S., Tkachev, S., Plusnin, P., & Kozlova, E. (2022). Highly efficient hydrogen production under visible light over g-C3N4-based photocatalysts with low platinum content. Chemical Engineering Journal, 445, 14, Article 136721. https://doi.org/10.1016/j.cej.2022.136721 221.Vu, M.-H., Sakar, M., Nguyen, C.-C., & Do, T.-O. (2018). Chemically Bonded Ni Cocatalyst onto the S Doped g-C3N4 Nanosheets and Their Synergistic Enhancement in H2 Production under Sunlight Irradiation. ACS Sustainable Chemistry & Engineering, 6(3), 4194-4203. 222.Wan, C., Zhou, L., Sun, L., Xu, L., Cheng, D.-g., Chen, F., Zhan, X., & Yang, Y. (2020). Boosting visible-light-driven hydrogen evolution from formic acid over AgPd/2D g-C3N4 nanosheets Mott-Schottky photocatalyst. Chemical Engineering Journal, 396, 125229. 223.Wan, J., Xue, P., Wang, R., Liu, L., Liu, E., Bai, X., Fan, J., & Hu, X. (2019). Synergistic effects in simultaneous photocatalytic removal of Cr (VI) and tetracycline hydrochloride by Z-scheme Co3O4/Ag/Bi2WO6 heterojunction. Applied Surface Science, 483, 677-687. 224.Wang, H., Zhang, L., Chen, Z., Hu, J., Li, S., Wang, Z., Liu, J., & Wang, X. (2014). Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chemical Society Reviews, 43(15), 5234-5244. 225.Wang, J., & Wang, S. (2018). Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chemical Engineering Journal, 334, 1502-1517. 226.Wang, J., & Wang, S. (2022). A critical review on graphitic carbon nitride (g-C3N4)-based materials: Preparation, modification and environmental application. Coordination Chemistry Reviews, 453, 214338. 227.Wang, J., Zhi, D., Zhou, H., He, X., & Zhang, D. (2018). Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode. Water research, 137, 324-334. 228.Wang, Q., Hisatomi, T., Jia, Q., Tokudome, H., Zhong, M., Wang, C., Pan, Z., Takata, T., Nakabayashi, M., & Shibata, N. (2016). Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nature materials, 15(6), 611-615. 229.Wang, S., Teng, Z., Xu, Y., Yuan, M., Zhong, Y., Liu, S., Wang, C., Wang, G., & Ohno, T. (2020). Defect as the essential factor in engineering carbon-nitride-based visible-light-driven Z-scheme photocatalyst. Applied Catalysis B: Environmental, 260, 118145. 230.Wang, W., Niu, Q., Zeng, G., Zhang, C., Huang, D., Shao, B., Zhou, C., Yang, Y., Liu, Y., & Guo, H. (2020). 1D porous tubular g-C3N4 capture black phosphorus quantum dots as 1D/0D metal-free photocatalysts for oxytetracycline hydrochloride degradation and hexavalent chromium reduction. Applied Catalysis B: Environmental, 273, 119051. 231.Wang, X.-j., Tian, X., Li, F.-t., Li, Y.-p., Zhao, J., Hao, Y.-j., & Liu, Y. (2016). Synchronous surface hydroxylation and porous modification of g-C3N4 for enhanced photocatalytic H2 evolution efficiency. International Journal of Hydrogen Energy, 41(6), 3888-3895. 232.Wang, X., Blechert, S., & Antonietti, M. (2012). Polymeric graphitic carbon nitride for heterogeneous photocatalysis. Acs Catalysis, 2(8), 1596-1606. 233.Wang, X., Maeda, K., Chen, X., Takanabe, K., Domen, K., Hou, Y., Fu, X., & Antonietti, M. (2009). Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. Journal of the American Chemical Society, 131(5), 1680-1681. 234.Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J. M., Domen, K., & Antonietti, M. (2009). A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature materials, 8(1), 76-80. 235.Wang, Y., Li, X., Zhao, R., Zhang, N., Zhu, B., & Yang, J. (2020). High-performance photocatalysis afforded by g-C3N4/NiCo2O4-decorated carbon cloth. Applied Surface Science, 532, 147410. https://doi.org/https://doi.org/10.1016/j.apsusc.2020.147410 236.Wang, Y., Rao, L., Wang, P., Shi, Z., & Zhang, L. (2020b). Photocatalytic activity of N-TiO2/O-doped N vacancy g-C3N4 and the intermediates toxicity evaluation under tetracycline hydrochloride and Cr(VI) coexistence environment. Applied Catalysis B: Environmental, 262, 118308. 237.Wang, Y., Tan, G., Dang, M., Dong, S., Liu, Y., Liu, T., Ren, H., Xia, A., & Lv, L. (2022). Study on surface modification of g-C3N4 photocatalyst. Journal of Alloys and Compounds, 908, 164507. 238.Wang, Y., Wang, Q., Zhan, X., Wang, F., Safdar, M., & He, J. (2013). Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale, 5(18), 8326-8339. 239.Wang, Y., Zhang, J., Wang, X., Antonietti, M., & Li, H. (2010). Boron‐and fluorine‐containing mesoporous carbon nitride polymers: metal‐free catalysts for cyclohexane oxidation. Angewandte Chemie International Edition, 49(19), 3356-3359. 240.Wei, C.-j., Li, X.-y., Xie, Y.-f., & Wang, X.-m. (2019). Direct photo transformation of tetracycline and sulfanomide group antibiotics in surface water: kinetics, toxicity and site modeling. Science of the Total Environment, 686, 1-9. 241.Wen, J., Xie, J., Chen, X., & Li, X. (2017). A review on g-C3N4-based photocatalysts. Applied Surface Science, 391, 72-123. 242.Wilbur, S., Ingerman, L., Citra, M., Osier, M., & Wohlers, D. (2000). Toxicological profile for chromium. US Department of Health and Human Services. Public Health Service, Agency for Toxic Substances and Disease Registry, 1-419. 243.Wu, H., Xie, H., He, G., Guan, Y., & Zhang, Y. (2016). Effects of the pH and anions on the adsorption of tetracycline on iron-montmorillonite. Applied Clay Science, 119, 161-169. 244.Wu, M., Zhang, J., He, B.-b., Wang, H.-w., Wang, R., & Gong, Y.-s. (2019). In-situ construction of coral-like porous P-doped g-C3N4 tubes with hybrid 1D/2D architecture and high efficient photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 241, 159-166. 245.Wu, X., Ma, H., Zhong, W., Fan, J., & Yu, H. (2020). Porous crystalline g-C3N4: Bifunctional NaHCO3 template-mediated synthesis and improved photocatalytic H2-evolution rate. Applied Catalysis B: Environmental, 271, 118899. https://doi.org/https://doi.org/10.1016/j.apcatb.2020.118899 246.Xiang, Q., Yu, J., & Jaroniec, M. (2011a). Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale, 3(9), 3670-3678. 247.Xiang, Q., Yu, J., & Jaroniec, M. (2011b). Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. The Journal of Physical Chemistry C, 115(15), 7355-7363. 248.Xiao, K. B., Liang, F. W., Liang, J. Z., Xu, W. C., Liu, Z., Chen, B. R., Jiang, X. D., Wu, X. L., Xu, J. A., Beiyuan, J. Z., & Wang, H. L. (2022). Magnetic bimetallic Fe, Ce-embedded N-enriched porous biochar for peroxymonosulfate activation in metronidazole degradation: Applications, mechanism insight and toxicity evaluation. Chemical Engineering Journal, 433, Article 134387. https://doi.org/10.1016/j.cej.2021.134387 249.Xiao, T., Tang, Z., Yang, Y., Tang, L., Zhou, Y., & Zou, Z. (2018). In situ construction of hierarchical WO3/g-C3N4 composite hollow microspheres as a Z-scheme photocatalyst for the degradation of antibiotics. Applied Catalysis B: Environmental, 220, 417-428. 250.Xiong, L., Yang, F., Yan, L., Yan, N., Yang, X., Qiu, M., & Yu, Y. (2011). Bifunctional photocatalysis of TiO2/Cu2O composite under visible light: Ti3+ in organic pollutant degradation and water splitting. Journal of Physics and Chemistry of Solids, 72(9), 1104-1109. 251.Xu, J., Brenner, T. J., Chabanne, L., Neher, D., Antonietti, M., & Shalom, M. (2014). Liquid-based growth of polymeric carbon nitride layers and their use in a mesostructured polymer solar cell with V oc exceeding 1 V. Journal of the American Chemical Society, 136(39), 13486-13489. 252.Xu, J., Brenner, T. J. K., Chen, Z., Neher, D., Antonietti, M., & Shalom, M. (2014). Upconversion-Agent Induced Improvement of g-C3N4 Photocatalyst under Visible Light. ACS Applied Materials & Interfaces, 6(19), 16481-16486. https://doi.org/10.1021/am5051263 253.Xu, J., Zhang, L., Shi, R., & Zhu, Y. (2013). Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis [10.1039/C3TA13188B]. Journal of Materials Chemistry A, 1(46), 14766-14772. https://doi.org/10.1039/C3TA13188B 254.Xu, L., Wang, X., Sun, Y., Gong, H., Guo, M., Zhang, X., Meng, L., & Gan, L. (2020). Mechanistic study on the combination of ultrasound and peroxymonosulfate for the decomposition of endocrine disrupting compounds. Ultrasonics sonochemistry, 60, 104749. 255.Xu, L., Xia, J., Xu, H., Yin, S., Wang, K., Huang, L., Wang, L., & Li, H. (2014). Reactable ionic liquid assisted solvothermal synthesis of graphite-like C3N4 hybridized α-Fe2O3 hollow microspheres with enhanced supercapacitive performance. Journal of Power Sources, 245, 866-874. 256.Xu, L., Zhang, H., Xiong, P., Zhu, Q., Liao, C., & Jiang, G. (2021). Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. Science of the Total Environment, 753, 141975. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.141975 257.Xu, Y., & Gao, S.-P. (2012). Band gap of C3N4 in the GW approximation. International Journal of Hydrogen Energy, 37(15), 11072-11080. 258.Xu, Y., Kraft, M., & Xu, R. (2016). Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting. Chemical Society Reviews, 45(11), 3039-3052. 259.Yahiat, S., Fourcade, F., Brosillon, S., & Amrane, A. (2011). Removal of antibiotics by an integrated process coupling photocatalysis and biological treatment–case of tetracycline and tylosin. International Biodeterioration & Biodegradation, 65(7), 997-1003. 260.Yan, S., Lv, S., Li, Z., & Zou, Z. (2010). Organic–inorganic composite photocatalyst of gC3N4 and TaON with improved visible light photocatalytic activities. Dalton Transactions, 39(6), 1488-1491. 261.Yan, Y., Zhou, X., Yu, P., Li, Z., & Zheng, T. (2020). Characteristics, mechanisms and bacteria behavior of photocatalysis with a solid Z-scheme Ag/AgBr/g-C3N4 nanosheet in water disinfection. Applied Catalysis A: General, 590, 117282. https://doi.org/https://doi.org/10.1016/j.apcata.2019.117282 262.Yang, R., Zhu, Z., Hu, C., Zhong, S., Zhang, L., Liu, B., & Wang, W. (2020). One-step preparation (3D/2D/2D) BiVO4/FeVO4@ rGO heterojunction composite photocatalyst for the removal of tetracycline and hexavalent chromium ions in water. Chemical Engineering Journal, 390, 124522. 263.Yao, X., Zhang, W., Huang, J., Du, Z., Hong, X., Chen, X., Hu, X., & Wang, X. (2020). Enhanced photocatalytic nitrogen fixation of Ag/B-doped g-C3N4 nanosheets by one-step in-situ decomposition-thermal polymerization method. Applied Catalysis A: General, 601, 117647. 264.Yu, L.-l., Luo, Z.-f., Zhang, Y.-y., Wu, S.-c., Yang, C., & Cheng, J.-h. (2019). Contrastive removal of oxytetracycline and chlortetracycline from aqueous solution on Al-MOF/GO granules. Environmental Science and Pollution Research, 26(4), 3685-3696. 265.Yuan, J. M., Wen, Y. H., Dionysiou, D. D., Sharma, V. K., & Ma, X. M. (2022). Biochar as a novel carbon-negative electron source and mediator: electron exchange capacity (EEC) and environmentally persistent free radicals (EPFRs): a review [Review]. Chemical Engineering Journal, 429, 12, Article 132313. https://doi.org/10.1016/j.cej.2021.132313 266.Yuan, Y.-P., Ruan, L.-W., Barber, J., Loo, S. C. J., & Xue, C. (2014). Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion. Energy & Environmental Science, 7(12), 3934-3951. 267.Yuan, Y.-P., Yin, L.-S., Cao, S.-W., Gu, L.-N., Xu, G.-S., Du, P., Chai, H., Liao, Y.-S., & Xue, C. (2014). Microwave-assisted heating synthesis: a general and rapid strategy for large-scale production of highly crystalline gC3N4 with enhanced photocatalytic H2 production. Green Chemistry, 16(11), 4663-4668. 268.Zeng, X., Lan, S., & Lo, I. M. C. (2019). Rapid disinfection of E. coli by a ternary BiVO4/Ag/g-C3N4 composite under visible light: photocatalytic mechanism and performance investigation in authentic sewage [10.1039/C8EN01283K]. Environmental Science: Nano, 6(2), 610-623. 269.Zhang, G., Zhang, J., Zhang, M., & Wang, X. (2012). Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. Journal of Materials Chemistry, 22(16), 8083-8091. 270.Zhang, H., Guo, L.-H., Zhao, L., Wan, B., & Yang, Y. (2015). Switching oxygen reduction pathway by exfoliating graphitic carbon nitride for enhanced photocatalytic phenol degradation. The Journal of Physical Chemistry Letters, 6(6), 958-963. 271.Zhang, J., Chen, X., Takanabe, K., Maeda, K., Domen, K., Epping, J. D., Fu, X., Antonietti, M., & Wang, X. (2010). Synthesis of a carbon nitride structure for visible‐light catalysis by copolymerization. Angewandte Chemie International Edition, 49(2), 441-444. 272.Zhang, J., Gao, N., Chen, F., Zhang, T., Zhang, G., Wang, D., Xie, X., Cai, D., Ma, X., & Wu, L. (2019). Improvement of Cr (VI) photoreduction under visible-light by g-C3N4 modified by nano-network structured palygorskite. Chemical Engineering Journal, 358, 398-407. 273.Zhang, J., Huang, Y., Nie, T., Wang, R., He, B., Han, B., Wang, H., Tian, Y., & Gong, Y. (2020). Enhanced visible-light photocatalytic H2 production of hierarchical g-C3N4 hexagon by one-step self-assembly strategy. Applied Surface Science, 499, 143942. 274.Zhang, J., Jing, B., Tang, Z., Ao, Z., Xia, D., Zhu, M., & Wang, S. (2021). Experimental and DFT insights into the visible-light driving metal-free C3N5 activated persulfate system for efficient water purification. Applied Catalysis B: Environmental, 289, 120023. 275.Zhang, J., & Ma, Z. (2018). Porous g-C3N4 with enhanced adsorption and visible-light photocatalytic performance for removing aqueous dyes and tetracycline hydrochloride. Chinese journal of chemical engineering, 26(4), 753-760. 276.Zhang, J., Sun, J., Maeda, K., Domen, K., Liu, P., Antonietti, M., Fu, X., & Wang, X. (2011). Sulfur-mediated synthesis of carbon nitride: band-gap engineering and improved functions for photocatalysis. Energy & Environmental Science, 4(3), 675-678. 277.Zhang, J., Zhang, M., Lin, L., & Wang, X. (2015). Sol processing of conjugated carbon nitride powders for thin‐film fabrication. Angewandte Chemie, 127(21), 6395-6399. 278.Zhang, J., Zhang, M., Sun, R. Q., & Wang, X. (2012). A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. Angewandte Chemie International Edition, 51(40), 10145-10149. 279.Zhang, M., Bai, X., Liu, D., Wang, J., & Zhu, Y. (2015). Enhanced catalytic activity of potassium-doped graphitic carbon nitride induced by lower valence position. Applied Catalysis B: Environmental, 164, 77-81. 280.Zhang, T., Yang, Q., Li, H., Zhong, J., Li, J., & Yang, H. (2022). Photocatalytic properties of BiOBr/g-C3N4 heterojunctions originated from S-scheme separation and transfer of interfacial charge pairs. Optical Materials, 131, 112649. https://doi.org/https://doi.org/10.1016/j.optmat.2022.112649 281.Zhang, X., Xie, X., Wang, H., Zhang, J., Pan, B., & Xie, Y. (2013). Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. Journal of the American Chemical Society, 135(1), 18-21. 282.Zhang, X., Yang, X. R., Chen, S. H., Dong, S., Liu, E. Z., Li, H., Ma, H. X., & Xu, K. Z. (2023). Unravelling the synergy of Eu dopant and surface oxygen vacancies confined in bimetallic oxide for peroxymonosulfate activation. Chemical Engineering Journal, 452, 12, Article 139192. https://doi.org/10.1016/j.cej.2022.139192 283.Zhang, X., Zhang, R., Niu, S., Zheng, J., & Guo, C. (2019). Enhanced photo-catalytic performance by effective electron-hole separation for MoS2 inlaying in g-C3N4 hetero-junction. Applied Surface Science, 475, 355-362. https://doi.org/https://doi.org/10.1016/j.apsusc.2018.12.301 284.Zhang, Y., & Antonietti, M. (2010). Photocurrent generation by polymeric carbon nitride solids: an initial step towards a novel photovoltaic system. Chemistry–An Asian Journal, 5(6), 1307-1311. 285.Zhang, Y., Thomas, A., Antonietti, M., & Wang, X. (2009). Activation of carbon nitride solids by protonation: morphology changes, enhanced ionic conductivity, and photoconduction experiments. Journal of the American Chemical Society, 131(1), 50-51. 286.Zhang, Z., Liu, C., Dong, Z., Dai, Y., Xiong, G., Liu, Y., Wang, Y., Wang, Y., & Liu, Y. (2020). Synthesis of flower-like MoS2/g-C3N4 nanosheet heterojunctions with enhanced photocatalytic reduction activity of uranium (VI). Applied Surface Science, 520, 146352. 287.Zhao, Q., Wang, J., Li, Z., Guo, Y., Wang, J., Tang, B., Abudula, A., & Guan, G. (2020). Heterostructured graphitic-carbon-nitride-nanosheets/copper(I) oxide composite as an enhanced visible light photocatalyst for decomposition of tetracycline antibiotics. Separation and Purification Technology, 250, 117238. https://doi.org/https://doi.org/10.1016/j.seppur.2020.117238 288.Zhao, S., Zhang, Y., Zhou, Y., Wang, Y., Qiu, K., Zhang, C., Fang, J., & Sheng, X. (2018). Facile one-step synthesis of hollow mesoporous g-C3N4 spheres with ultrathin nanosheets for photoredox water splitting. Carbon, 126, 247-256. https://doi.org/https://doi.org/10.1016/j.carbon.2017.10.033 289.Zhao, W., Dong, Q., Sun, C., Xia, D., Huang, H., Yang, G., Wang, G., & Leung, D. Y. C. (2021). A novel Au/g-C3N4 nanosheets/CeO2 hollow nanospheres plasmonic heterojunction photocatalysts for the photocatalytic reduction of hexavalentchromium and oxidation of oxytetracycline hydrochloride. Chemical Engineering Journal, 409, 128185. 290.Zhao, W., Li, J., She, T., Ma, S., Cheng, Z., Wang, G., Zhao, P., Wei, W., Xia, D., & Leung, D. Y. C. (2021). Study on the Photocatalysis Mechanism of the Z-Scheme Cobalt Oxide Nanocubes/Carbon Nitride Nanosheets Heterojunction Photocatalyst with High Photocatalytic Performances. Journal of Hazardous Materials, 402, 123839. 291.Zhao, W., Li, Y., Zhao, P., Zhang, L., Dai, B., Huang, H., Zhou, J., Zhu, Y., Ma, K., & Leung, D. Y. C. (2021). Insights into the photocatalysis mechanism of the novel 2D/3D Z-Scheme g-C3N4/SnS2 heterojunction photocatalysts with excellent photocatalytic performances. Journal of Hazardous Materials, 402, 123711. https://doi.org/https://doi.org/10.1016/j.jhazmat.2020.123711 292.Zhao, Z., Nie, T., & Zhou, W. (2019). Enhanced biochar stabilities and adsorption properties for tetracycline by synthesizing silica-composited biochar. Environmental Pollution, 254, 113015. 293.Zhen, X., Fan, C., Tang, L., Luo, J., Zhong, L., Gao, Y., Zhang, M., & Zheng, J. (2023). Advancing charge carriers separation and transformation by nitrogen self-doped hollow nanotubes g-C3N4 for enhancing photocatalytic degradation of organic pollutants. Chemosphere, 312, 137145. 294.Zheng, B., Zheng, Z., Zhang, J., Luo, X., Wang, J., Liu, Q., & Wang, L. (2011). Degradation of the emerging contaminant ibuprofen in aqueous solution by gamma irradiation. Desalination, 276(1-3), 379-385. 295.Zheng, S., Kong, Z., Meng, L., Song, J., Jiang, N., Gao, Y., Guo, J., Mu, T., & Huang, M. (2020). MIL-88A grown in-situ on graphitic carbon nitride (g-C3N4) as a novel sorbent: Synthesis, characterization, and high-performance of tetracycline removal and mechanism. Advanced Powder Technology, 31(10), 4344-4353. 296.Zheng, X., Liu, Y., Liu, X., Li, Q., & Zheng, Y. (2021). A novel PVDF-TiO2@g-C3N4 composite electrospun fiber for efficient photocatalytic degradation of tetracycline under visible light irradiation. Ecotoxicology and Environmental Safety, 210, 111866. 297.Zheng, Y., Liu, Y., Guo, X., Chen, Z., Zhang, W., Wang, Y., Tang, X., Zhang, Y., & Zhao, Y. (2020). Sulfur-doped g-C3N4/rGO porous nanosheets for highly efficient photocatalytic degradation of refractory contaminants. Journal of Materials Science & Technology, 41, 117-126. 298.Zhitkovich, A. (2005). Importance of chromium− DNA adducts in mutagenicity and toxicity of chromium (VI). Chemical research in toxicology, 1(18), 3-11. 299.Zhitkovich, A. (2011). Chromium in drinking water: sources, metabolism, and cancer risks. Chemical research in toxicology, 24(10), 1617-1629. 300.Zhou, K.-G., McManus, D., Prestat, E., Zhong, X., Shin, Y., Zhang, H.-L., Haigh, S. J., & Casiraghi, C. (2016). Self-catalytic membrane photo-reactor made of carbon nitride nanosheets. Journal of Materials Chemistry A, 4(30), 11666-11671. 301.Zhou, L., Xu, Y., Yu, W., Guo, X., Yu, S., Zhang, J., & Li, C. (2016). Ultrathin two-dimensional graphitic carbon nitride as a solution-processed cathode interfacial layer for inverted polymer solar cells. Journal of Materials Chemistry A, 4(21), 8000-8004. 302.Zhou, P., Yu, J., & Jaroniec, M. (2014). All‐solid‐state Z‐scheme photocatalytic systems. Advanced Materials, 26(29), 4920-4935. 303.Zhou, P., Yu, J., & Jaroniec, M. (2014). Z-scheme photocatalytic systems. Adv Mater, 26(29), 4920-4935. 304.Zhou, Q., Huang, W. Y., Xu, C., Liu, X., Yang, K., Li, D., Hou, Y., & Dionysiou, D. D. (2021). Novel hierarchical carbon quantum dots-decorated BiOCl nanosheet/carbonized eggshell membrane composites for improved removal of organic contaminants from water via synergistic adsorption and photocatalysis. Chemical Engineering Journal, 420, 12, Article 129582. https://doi.org/10.1016/j.cej.2021.129582 305.Zhou, Y., Zhang, L., Liu, J., Fan, X., Wang, B., Wang, M., Ren, W., Wang, J., Li, M., & Shi, J. (2015). Brand new P-doped gC3N4: enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light. Journal of Materials Chemistry A, 3(7), 3862-3867. 306.Zhou, Z., Wang, J., Yu, J., Shen, Y., Li, Y., Liu, A., Liu, S., & Zhang, Y. (2015). Dissolution and Liquid Crystals Phase of 2D Polymeric Carbon Nitride. Journal of the American Chemical Society, 137(6), 2179-2182. https://doi.org/10.1021/ja512179x 307.Zhu, B., Xia, P., Ho, W., & Yu, J. (2015). Isoelectric point and adsorption activity of porous g-C3N4. Applied Surface Science, 344, 188-195. 308.Zhu, S., & Wang, D. (2017). Photocatalysis: basic principles, diverse forms of implementations and emerging scientific opportunities. Advanced Energy Materials, 7(23), 1700841.
|