|
[1] Fan, Y., Wang, W., Hao, Z., & Zhan, C. (2020). Work hardening mechanism based on molecular dynamics simulation in cutting Ni–Fe–Cr series of Ni-based alloy. Journal of Alloys and Compounds, 819, 153331. [2]Child, D. J., West, G. D., & Thomson, R. C. (2011). Assessment of surface hardening effects from shot peening on a Ni-based alloy using electron backscatter diffraction techniques. Acta Materialia, 59(12), 4825-4834. [3]Ezugwu, E. O., Bonney, J., & Yamane, Y. (2003). An overview of the machinability of aeroengine alloys. Journal of materials processing technology, 134(2), 233-253. [4]Yao, C. F., Zhuang, L., Cao, Y. L., Ai, X. P., & Yang, H. X. (2008). Hydrogen release from hydrolysis of borazane on Pt-and Ni-based alloy catalysts. International journal of hydrogen energy, 33(10), 2462-2467. [5]Thellaputta, G. R., Chandra, P. S., & Rao, C. S. P. (2017). Machinability of nickel based superalloys: a review. Materials Today: Proceedings, 4(2), 3712-3721. [6]Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., ... & Chang, S. Y. (2004). Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced engineering materials, 6(5), 299-303. [7]Fu, Y., Li, J., Luo, H., Du, C., & Li, X. (2021). Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys. Journal of Materials Science & Technology, 80, 217-233. [8]Wu, Z., Bei, H., Otto, F., Pharr, G. M., & George, E. P. (2014). Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics, 46, 131-140. [9]Lu, Z. P., Wang, H., Chen, M. W., Baker, I., Yeh, J. W., Liu, C. T., & Nieh, T. G. (2015). An assessment on the future development of high-entropy alloys: Summary from a recent workshop. Intermetallics, 66, 67-76. [10]Moravcikova-Gouvea, L., Moravcik, I., Omasta, M., Veselý, J., Cizek, J., Minárik, P., ... & Dlouhy, I. (2020). High-strength Al0. 2Co1. 5CrFeNi1. 5Ti high-entropy alloy produced by powder metallurgy and casting: A comparison of microstructures, mechanical and tribological properties. Materials Characterization, 159, 110046. [11]Zhang, Y., Zuo, T. T., Tang, Z., Gao, M. C., Dahmen, K. A., Liaw, P. K., & Lu, Z. P. (2014). Microstructures and properties of high-entropy alloys. Progress in materials science, 61, 1-93. [12]Shun, T. T., Chang, L. Y., & Shiu, M. H. (2013). Age-hardening of the CoCrFeNiMo0. 85 high-entropy alloy. Materials characterization, 81, 92-96. [13]Kuznetsov, A. V., Shaysultanov, D. G., Stepanov, N. D., Salishchev, G. A., & Senkov, O. N. (2012). Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions. Materials Science and Engineering: A, 533, 107-118. [14]He, J. Y., Liu, W. H., Wang, H., Wu, Y., Liu, X. J., Nieh, T. G., & Lu, Z. P. (2014). Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Materialia, 62, 105-113. [15]Hussain, S. W., Mehmood, M. A., Karim, M., Godfrey, A., & Yaqoob, K. (2022). Microstructural evolution and mechanical characterization of a WC-reinforced CoCrFeNi HEA matrix composite. Scientific Reports, 12(1), 1-8. [16]Li, J., Jia, W., Wang, J., Kou, H., Zhang, D., & Beaugnon, E. (2016). Enhanced mechanical properties of a CoCrFeNi high entropy alloy by supercooling method. Materials & Design, 95, 183-187. [17]Wang, J., Guo, T., Li, J., Jia, W., & Kou, H. (2018). Microstructure and mechanical properties of non-equilibrium solidified CoCrFeNi high entropy alloy. Materials Chemistry and Physics, 210, 192-196. [18]Nagy, P., Rohbeck, N., Roussely, G., Sortais, P., Lábár, J. L., Gubicza, J., ... & Pethö, L. (2020). Processing and characterization of a multibeam sputtered nanocrystalline CoCrFeNi high-entropy alloy film. Surface and Coatings Technology, 386, 125465. [19]Lindner, T., Löbel, M., Sattler, B., & Lampke, T. (2019). Surface hardening of FCC phase high-entropy alloy system by powder-pack boriding. Surface and Coatings Technology, 371, 389-394. [20]Tsai, M. H., & Yeh, J. W. (2014). High-entropy alloys: a critical review. Materials Research Letters, 2(3), 107-123. [21]Zhang, Y., Zuo, T. T., Tang, Z., Gao, M. C., Dahmen, K. A., Liaw, P. K., & Lu, Z. P. (2014). Microstructures and properties of high-entropy alloys. Progress in Materials Science, 61, 1-93. [22]Gludovatz, B., Hohenwarter, A., Thurston, K. V., Bei, H., Wu, Z., George, E. P., & Ritchie, R. O. (2016). Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nature Communications, 7(1), 1-8. [23]Kireeva, I. V., Chumlyakov, Y. I., Pobedennaya, Z. V., Vyrodova, A. V., & Karaman, I. (2018). Twinning in [001]-oriented single crystals of CoCrFeMnNi high-entropy alloy at tensile deformation. Materials Science and Engineering: A, 713, 253-259. [24]Kireeva, I. V., Chumlyakov, Y. I., Pobedennaya, Z. V., Kuksgausen, I. V., & Karaman, I. (2017). Orientation dependence of twinning in single crystalline CoCrFeMnNi high-entropy alloy. Materials Science and Engineering: A, 705, 176-181. [25]Picak, S., Wegener, T., Sajadifar, S. V., Sobrero, C., Richter, J., Kim, H., ... & Karaman, I. (2021). On the low-cycle fatigue response of CoCrNiFeMn high entropy alloy with ultra-fine grain structure. Acta Materialia, 205, 116540. [26]Zhang, L. (2022). Thermo-mechanical characterization and dynamic failure of a CoCrFeNi high-entropy alloy. Materials Science and Engineering: A, 844, 143166. [27]Zhao, Y., Wang, X., Cao, T., Han, J. K., Kawasaki, M., Jang, J. I., ... & Xue, Y. (2020). Effect of grain size on the strain rate sensitivity of CoCrFeNi high-entropy alloy. Materials Science and Engineering: A, 782, 139281. [28]Praveen, S., Basu, J., Kashyap, S., & Kottada, R. S. (2016). Exceptional resistance to grain growth in nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures. Journal of Alloys and Compounds, 662, 361-367. [29]Sathiyamoorthi, P., Basu, J., Kashyap, S., Pradeep, K. G., & Kottada, R. S. (2017). Thermal stability and grain boundary strengthening in ultrafine-grained CoCrFeNi high entropy alloy composite. Materials & Design, 134, 426-433. [30]Qi, Y., He, T., Xu, H., Hu, Y., Wang, M., & Feng, M. (2021). Effects of microstructure and temperature on the mechanical properties of nanocrystalline CoCrFeMnNi high entropy alloy under nanoscratching using molecular dynamics simulation. Journal of Alloys and Compounds, 871, 159516. [31]Yang, X., Xi, Y., He, C., Chen, H., Zhang, X., & Tu, S. (2022). Chemical short-range order strengthening mechanism in CoCrNi medium-entropy alloy under nanoindentation. Scripta Materialia, 209, 114364. [32]Doan, D. Q., Fang, T. H., & Chen, T. H. (2020). Influences of grain size and temperature on tribological characteristics of CuAlNi alloys under nanoindentation and nanoscratch. International Journal of Mechanical Sciences, 185, 105865. [33]Doan, D. Q., Fang, T. H., & Chen, T. H. (2021). Microstructure and composition dependence of mechanical characteristics of nanoimprinted AlCoCrFeNi high-entropy alloys. Scientific Reports, 11(1), 1-19. [34]Yuan, S., Guo, X., Liu, S., Li, P., Liu, F., Zhang, L., & Kang, R. (2022). Atomistic understanding of the subsurface damage mechanism of silicon (100) during the secondary nano-scratching processing. Materials Science in Semiconductor Processing, 144, 106624. [35]Gao, Y., Ruestes, C. J., & Urbassek, H. M. (2014). Nanoindentation and nanoscratching of iron: Atomistic simulation of dislocation generation and reactions. Computational Materials Science, 90, 232-240. [36]Song, Z., Tang, X., Chen, X., Fu, T., Zheng, H., & Lu, S. (2021). Nano-indentation and nano-scratching of pure nickel and NiTi shape memory alloy thin films: an atomic-scale simulation. Thin Solid Films, 138906. [37]Wang, Z., Li, J., Fang, Q., Liu, B., & Zhang, L. (2017). Investigation into nanoscratching mechanical response of AlCrCuFeNi high-entropy alloys using atomic simulations. Applied Surface Science, 416, 470-481. [38]Wu, Z., Zhang, L., & Liu, W. (2021). Structural anisotropy effect on the nanoscratching of zonocrystalline 6H-silicon carbide. Wear, 476, 203677. [39]Doan, D. Q., Fang, T. H., & Chen, T. H. (2021). Machining mechanism and deformation behavior of high-entropy alloy under elliptical vibration cutting. Intermetallics, 131, 107079. [40]Fan, Y., Wang, W., Hao, Z., & Zhan, C. (2020). Work hardening mechanism based on molecular dynamics simulation in cutting Ni–Fe–Cr series of Ni-based alloy. Journal of Alloys and Compounds, 819, 153331. [41]Zhao, Y. Y., Ye, Y. X., Liu, C. Z., Feng, R., Yao, K. F., & Nieh, T. G. (2019). Tribological behavior of an amorphous Zr20Ti20Cu20Ni20Be20 high-entropy alloy studied using a nanoscratch technique. Intermetallics, 113, 106561. [42]Zhang, P., Cao, X., Zhang, X., & Wang, Y. (2021). Effects of cutting parameters on the subsurface damage of single crystal copper during nanocutting process. Vacuum, 187, 109420. [43]Li, J., Dong, L., Dong, X., Zhao, W., Liu, J., Xiong, J., & Xu, C. (2021). Study on wear behavior of FeNiCrCoCu high entropy alloy coating on Cu substrate based on molecular dynamics. Applied Surface Science, 570, 151236. [44]Chen, Y., Hu, Z., Jin, J., Li, L., Yu, Y., Peng, Q., & Xu, X. (2021). Molecular dynamics simulations of scratching characteristics in vibration-assisted nano-scratch of single-crystal silicon. Applied Surface Science, 551, 149451. [45]Tong, Y., Jin, K., Bei, H., Ko, J. Y. P., Pagan, D. C., Zhang, Y., & Zhang, F. X. (2018). Local lattice distortion in NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys investigated by synchrotron X-ray diffraction. Materials & Design, 155, 1-7. [46]Tang, Y., & Li, D. Y. (2021). Nano-tribological behavior of high-entropy alloys CrMnFeCoNi and CrFeCoNi under different conditions: A molecular dynamics study. Wear, 476, 203583. [47]Shi, T., Su, Z., Li, J., Liu, C., Yang, J., He, X., ... & Lu, C. (2022). Distinct point defect behaviours in body-centered cubic medium-entropy alloy NbZrTi induced by severe lattice distortion. Acta Materialia, 229, 117806. [48]Tong, Y., Jin, K., Bei, H., Ko, J. Y. P., Pagan, D. C., Zhang, Y., & Zhang, F. X. (2018). Local lattice distortion in NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys investigated by synchrotron X-ray diffraction. Materials & Design, 155, 1-7. [49]Nguyen, V. T., & Fang, T. H. (2020). Molecular dynamics simulation of abrasive characteristics and interfaces in chemical mechanical polishing. Applied Surface Science, 509, 144676. [50]Zhou, X. W., Johnson, R. A., & Wadley, H. N. G. (2004). Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Physical Review B, 69(14), 144113. [51]Farkas, D., & Caro, A. (2018). Model interatomic potentials and lattice strain in a high-entropy alloy. Journal of Materials Research, 33(19), 3218-3225. [52]Nguyen, V. T., & Fang, T. H. (2020). Molecular dynamics simulation of abrasive characteristics and interfaces in chemical mechanical polishing. Applied Surface Science, 509, 144676. [53]Bui, T. X., Fang, T. H., & Lee, C. I. (2021). Anisotropic crack propagation and self-healing mechanism of freestanding black phosphorus nanosheets. Nanotechnology, 32(16), 165704. [54]Li, W., Rao, S. I., Wang, Q., Fan, H., Yang, J., & El-Awady, J. A. (2020). Core structure and mobility of edge dislocations in face-centered-cubic chemically complex NiCoFe and NiCoFeCu equiatomic solid-solution alloys. Materialia, 9, 100628. [55]Zhou, X. W., Wadley, H. N. G., Johnson, R. A., Larson, D. J., Tabat, N., Cerezo, A., ... & Kelly, T. F. (2001). Atomic scale structure of sputtered metal multilayers. Acta materialia, 49(19), 4005-4015. [56]Bahramyan, M., Mousavian, R. T., & Brabazon, D. (2020). Determination of atomic-scale structure and compressive behavior of solidified AlxCrCoFeCuNi high entropy alloys. International Journal of Mechanical Sciences, 171, 105389. [57]Singh, S. K., & Parashar, A. (2022). Effect of lattice distortion and nanovoids on the shock compression behavior of (Co-Cr-Cu-Fe-Ni) high entropy alloy. Computational Materials Science, 209, 111402. [58]Zhang, Q., Huang, R., Jiang, J., Cao, T., Zeng, Y., Li, J., ... & Li, X. (2022). Size effects and plastic deformation mechanisms in single-crystalline CoCrFeNi micro/nanopillars. Journal of the Mechanics and Physics of Solids, 162, 104853. [59]Goel, S., Beake, B., Chan, C. W., Faisal, N. H., & Dunne, N. (2015). Twinning anisotropy of tantalum during nanoindentation. Materials Science and Engineering: A, 627, 249-261. [60]Shimizu, F., Ogata, S., & Li, J. (2007). Theory of shear banding in metallic glasses and molecular dynamics calculations. Materials Transactions, 0710160231-0710160231. [61]Guo, J., Chen, J., Lin, Y., Liu, Z., & Wang, Y. (2021). Effects of surface texturing on nanotribological properties and subsurface damage of monocrystalline GaN subjected to scratching investigated using molecular dynamics simulation. Applied Surface Science, 539, 148277. [62]Doan, D. Q., Fang, T. H., & Chen, T. H. (2021). Interfacial and mechanical characteristics of TiN/Al composites under nanoindentation. International Journal of Solids and Structures, 226, 111083. [63]Bui, T. X., Fang, T. H., & Lee, C. I. (2020). Effects of flaw shape and size on fracture toughness and destructive mechanism inside Ni15Al70Co15 metallic glass. Computational Materials Science, 183, 109807. [64]Pham, A. V., Fang, T. H., Nguyen, V. T., & Chen, T. H. (2021). Effect of incidence and size of graphite particle on the formation of graphene on Ni surfaces. Vacuum, 187, 110092. [65]Bui, T. X., Fang, T. H., & Lee, C. I. (2020). Strain rate and shear-transformation zone response of nanoindentation and nanoscratching on Ni50Zr50 metallic glasses using molecular dynamics. Physica B: Condensed Matter, 583, 412021. [66]Chen, X., Xiang, Y., & Vlassak, J. J. (2006). Novel technique for measuring the mechanical properties of porous materials by nanoindentation. Journal of Materials Research, 21(3), 715-724. [67]Wang, C. H., Chao, K. C., Fang, T. H., Stachiv, I., & Hsieh, S. F. (2016). Investigations of the mechanical properties of nanoimprinted amorphous Ni–Zr alloys utilizing the molecular dynamics simulation. Journal of Alloys and Compounds, 659, 224-231. [68]Zhu, P. Z., Qiu, C., Fang, F. Z., Yuan, D. D., & Shen, X. C. (2014). Molecular dynamics simulations of nanometric cutting mechanisms of amorphous alloy. Applied Surface Science, 317, 432-442. [69]AlMotasem, A. T., Bergström, J., Gåård, A., Krakhmalev, P., & Holleboom, L. J. (2017). Atomistic insights on the wear/friction behavior of nanocrystalline ferrite during nanoscratching as revealed by molecular dynamics. Tribology Letters, 65(3), 1-13. [70]Dai, H., Li, S., & Chen, G. (2019). Molecular dynamics simulation of subsurface damage mechanism during nanoscratching of single crystal silicon. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 233(1), 61-73. [71]Doan, Dinh-Quan, Te-Hua Fang, and Tao-Hsing Chen. "Nanomachining characteristics of textured polycrystalline NiFeCo alloy using molecular dynamics." Journal of Manufacturing Processes 74 (2022): 423-440. [72]Li, J., Fang, Q., Zhang, L., & Liu, Y. (2015). The effect of rough surface on nanoscale high speed grinding by a molecular dynamics simulation. Computational Materials Science, 98, 252-262. [73]Gao, Y., & Urbassek, H. M. (2016). Scratching of nanocrystalline metals: A molecular dynamics study of Fe. Applied Surface Science, 389, 688-695. [74]Liu, C., Xu, W., Zhang, J., Xiao, J., Chen, X., & Xu, J. (2022). Numerical investigation on the temperature effect in nanometric cutting of polycrystalline silicon. International Journal of Mechanical Sciences, 220, 107172. [75]Salishchev, G. A., Tikhonovsky, M. A., Shaysultanov, D. G., Stepanov, N. D., Kuznetsov, A. V., Kolodiy, I. V., ... & Senkov, O. N. (2014). Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. Journal of Alloys and Compounds, 591, 11-21. [76]Hu, X., & Martini, A. (2015). Atomistic simulation of the effect of roughness on nanoscale wear. Computational Materials Science, 102, 208-212. [77]Bai, L., Srikanth, N., Korznikova, E. A., Baimova, J. A., Dmitriev, S. V., & Zhou, K. (2017). Wear and friction between smooth or rough diamond-like carbon films and diamond tips. Wear, 372, 12-20. [78]Poulia, A., Georgatis, E., Lekatou, A., & Karantzalis, A. (2017). Dry‐Sliding Wear Response of MoTaWNbV High Entropy Alloy. Advanced Engineering Materials, 19(2), 1600535. [79]Wu, J. M., Lin, S. J., Yeh, J. W., Chen, S. K., Huang, Y. S., & Chen, H. C. (2006). Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear, 261(5-6), 513-519. [80]Chen, M., Shi, X. H., Yang, H., Liaw, P. K., Gao, M. C., Hawk, J. A., & Qiao, J. (2018). Wear behavior of Al0. 6CoCrFeNi high-entropy alloys: Effect of environments. Journal of Materials Research, 33(19), 3310-3320. [81]Bhardwaj, V., Zhou, Q., Zhang, F., Han, W., Du, Y., Hua, K., & Wang, H. (2021). Effect of Al addition on the microstructure, mechanical and wear properties of TiZrNbHf refractory high entropy alloys. Tribology International, 160, 107031. [82]Joseph, J., Haghdadi, N., Annasamy, M., Kada, S., Hodgson, P. D., Barnett, M. R., & Fabijanic, D. M. (2020). On the enhanced wear resistance of CoCrFeMnNi high entropy alloy at intermediate temperature. Scripta Materialia, 186, 230-235. [83]Lu, J. Z., Cao, J., Lu, H. F., Zhang, L. Y., & Luo, K. Y. (2019). Wear properties and microstructural analyses of Fe-based coatings with various WC contents on H13 die steel by laser cladding. Surface and Coatings Technology, 369, 228-237. [84]AlMotasem, A. T., Bergström, J., Gåård, A., Krakhmalev, P., & Holleboom, L. J. (2017). Tool microstructure impact on the wear behavior of ferrite iron during nanoscratching: An atomic level simulation. Wear, 370, 39-45. [85]Han, X., Liu, P., Sun, D., & Wang, Q. (2019). An atomic-level understanding of the friction and wear behaviors of Ti2AlN/TiAl composite via MD simulations. Tribology International, 137, 340-348. [86]Gao, Y., & Urbassek, H. M. (2016). Scratching of nanocrystalline metals: A molecular dynamics study of Fe. Applied Surface Science, 389, 688-695. [87]Lu, X., Yang, P., Luo, J., Ren, J., Xue, H., & Ding, Y. (2019). Tensile mechanical performance of Ni–Co alloy nanowires by molecular dynamics simulation. RSC Advances, 9(44), 25817-25828. [88]Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E. H., George, E. P., & Ritchie, R. O. (2014). A fracture-resistant high-entropy alloy for cryogenic applications. Science, 345(6201), 1153-1158. [89]Moon, J., Park, J. M., Bae, J. W., Kang, N., Oh, J., Shin, H., & Kim, H. S. (2020). Hetero-deformation-induced strengthening by twin-mediated martensitic transformation in an immiscible medium-entropy alloy. Scripta Materialia, 186, 24-28. [90]Moon, J., Park, J. M., Bae, J. W., Kang, N., Oh, J., Shin, H., & Kim, H. S. (2020). Hetero-deformation-induced strengthening by twin-mediated martensitic transformation in an immiscible medium-entropy alloy. Scripta Materialia, 186, 24-28. [91]Moon, J., Park, J. M., Bae, J. W., Kang, N., Oh, J., Shin, H., & Kim, H. S. (2020). [92]Wang, Y., Chen, M., Zhou, F., & Ma, E. (2002). High tensile ductility in a nanostructured metal. nature, 419(6910), 912-915. [93]Kim, J. G., Enikeev, N. A., Seol, J. B., Abramova, M. M., Karavaeva, M. V., Valiev, R. Z., ... & Kim, H. S. (2018). Superior strength and multiple strengthening mechanisms in nanocrystalline TWIP steel. Scientific reports, 8(1), 1-10. [94]Doan, D. Q., Fang, T. H., & Chen, T. H. (2022). Structural transformation and strain localization at twin boundaries in Al0.4CoCrFeNi high-entropy alloy. Applied Surface Science, 152383. [95]Wang, J., Li, N., Anderoglu, O., Zhang, X., Misra, A., Huang, J. Y., & Hirth, J. P. (2010). Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Materialia, 58(6), 2262-2270. [96]Doan, D. Q., Fang, T. H., Chen, T. H., & Bui, T. X. (2021). Effects of void and inclusion sizes on mechanical response and failure mechanism of AlCrCuFeNi2 high-entropy alloy. Engineering Fracture Mechanics, 252, 107848. [97]Fan, J., Li, J., Huang, Z., Wen, P. H., & Bailey, C. G. (2018). Grain size effects on indentation-induced plastic deformation and amorphization process of polycrystalline silicon. Computational Materials Science, 144, 113-119. [98]Chang, S. Y., & Chang, T. K. (2007). Grain size effect on nanomechanical properties and deformation behavior of copper under nanoindentation test. Journal of Applied Physics, 101(3), 033507. [99]Shi, J., Wang, Y., & Yang, X. (2013). Nano-scale machining of polycrystalline coppers-effects of grain size and machining parameters. Nanoscale research letters, 8(1), 1-18. [100] Sun, K., Fang, L., Yan, Z., & Sun, J. (2013). Atomistic scale tribological behaviors in nano-grained and single crystal copper systems. Wear, 303(1-2), 191-201. [101] Yin, Z., Zhu, P., & Li, B. (2021). Study of nanoscale wear of SiC/Al nanocomposites using molecular dynamics simulations. Tribology Letters, 69(2), 1-17. [102] Doan, D.Q., Fang, T.H. and Chen, T.H., 2020. Nanotribological characteristics and strain hardening of amorphous Cu64Zr36/crystalline Cu nanolaminates. Tribology International, 147, p.106275. [103] Chen, R., Jiang, R., Lei, H., & Liang, M. (2013). Material removal mechanism during porous silica cluster impact on crystal silicon substrate studied by molecular dynamics simulation. Applied Surface Science, 264, 148-156. [104] Wu, C. D. (2016). Molecular dynamics simulation of nanotribology properties of CuZr metallic glasses. Applied Physics A, 122(4), 486. [105] Nguyen, V. T., & Fang, T. H. (2020). Material removal and wear mechanism in abrasive polishing of SiO2/SiC using molecular dynamics. Ceramics International, 46(13), 21578-21595. [106]Pham, V. T., & Fang, T. H. (2020). Pile-up and heat effect on the mechanical response of SiGe on Si (0 0 1) substrate during nanoscratching and nanoindentation using molecular dynamics. Computational Materials Science, 174, 109465. [107] Dai, H., Li, S., & Chen, G. (2019). Molecular dynamics simulation of subsurface damage mechanism during nanoscratching of single crystal silicon. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 233(1), 61-73. [108] Tian, F., Varga, L. K., Shen, J., & Vitos, L. (2016). Calculating elastic constants in high-entropy alloys using the coherent potential approximation: Current issues and errors. Computational materials science, 111, 350-358. [109] Yu, Y., Wang, J., Li, J., Yang, J., Kou, H., & Liu, W. (2016). Tribological behavior of AlCoCrFeNi (Ti0. 5) high entropy alloys under oil and MACs lubrication. Journal of Materials Science & Technology, 32(5), 470-476. [110] Deng, G., Tieu, A. K., Su, L., Wang, P., Wang, L., Lan, X., ... & Zhu, H. (2020). Investigation into reciprocating dry sliding friction and wear properties of bulk CoCrFeNiMo high entropy alloys fabricated by spark plasma sintering and subsequent cold rolling processes: Role of Mo element concentration. Wear, 460, 203440.
|