1.Hightech, PCB是什麼?了解印刷電路板的種類與製程. 2021.
2.禾宇精密科技股份有限公司, 電路板雕刻機操作手冊.
3.晟鈦股份有限公司, PCB知識.
4.陳仲宜, PVD鍍膜刀具之應用.
5.Boxman, R.L. and S. Goldsmith, Macroparticle contamination in cathodic arc coatings: generation, transport and control. Surface and Coatings Technology, 1992. 52(1): p. 39-50.
6.蘇青森, 真空技術精華. 2003(五南圖書出版股份有限公司,台北市).
7.汪大永、張銀祐、洪志穎, 陰極電弧沉積氮化鋁鈦氮化鉻奈米多層薄膜之開發與應用. 科學與工程技術期刊, 2005. 1(2): p. 1-6.
8.Bull, S.J., D.G. Bhat, and M.H. Staia, Properties and performance of commercial TiCN coatings. Part 1: coating architecture and hardness modelling. Surface and Coatings Technology, 2003. 163-164: p. 499-506.
9.Chang, Y.-Y., D.-Y. Wang, and C.-Y. Hung, Structural and mechanical properties of nanolayered TiAlN/CrN coatings synthesized by a cathodic arc deposition process. Surface and Coatings Technology, 2005. 200(5): p. 1702-1708.
10.Tay, B.K., Z.W. Zhao, and D.H.C. Chua, Review of metal oxide films deposited by filtered cathodic vacuum arc technique. Materials Science and Engineering: R: Reports, 2006. 52(1): p. 1-48.
11.Deng, Y., et al., Physical vapor deposition technology for coated cutting tools: A review. Ceramics International, 2020. 46(11): p. 18373-18390.
12.Krella, A.K., Cavitation erosion of monolayer PVD coatings – An influence of deposition technique on the degradation process. Wear, 2021. 478-479.
13.Kumagai, M., et al., Macroparticles on titanium nitiride thin film prepared by cathodic-arc plasma-based ion implantation and deposition. Surface and Coatings Technology, 2003. 169-170: p. 401-404.
14.Xiao, B.-J., et al., Microstructure, mechanical properties and cutting performance of AlTiN coatings prepared via arc ion plating using the arc splitting technique. Surface and Coatings Technology, 2017. 311: p. 98-103.
15.張詠傑, 陰極電弧系統之新型電磁控弧源設計與沉積氮化鋁鈦硬質薄膜機械性質研究, in 機械與電腦輔助工程系碩士班. 2018, 國立虎尾科技大學: 雲林縣. p. 65.16.Lang, W., et al., Study on cathode spot motion and macroparticles reduction in axisymmetric magnetic field-enhanced vacuum arc deposition. 2010. 84(9): p. 1111-1117.
17.陳柏諺, 不銹鋼基材Ti-Al-Si-N薄膜之高溫氧化性能. 明道大學材料科學與工程研究所碩士論文, 2009.18.Thornton, J.A.J.J.o.V.S. and Technology, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. 1974. 11(4): p. 666-670.
19.Anders, A.J.T.S.F., A structure zone diagram including plasma-based deposition and ion etching. 2010. 518(15): p. 4087-4090.
20.Ohring, M., The Materials Science of Thin Films, 1991.
21.邱文通, 自潤性氮化釩鈦硬質薄膜之陰極電弧沉積製程設計與磨潤機制研究, in 機械與電腦輔助工程系碩士班. 2017, 國立虎尾科技大學: 雲林縣. p. 134.22.Halling, J., The tribology of surface films. Thin Solid Films, 1983. 108(2): p. 103-115.
23.Groche, P., G. Nitzsche, and A. Elsen, Adhesive wear in deep drawing of aluminum sheets. CIRP Annals, 2008. 57(1): p. 295-298.
24.Saini, M.S., et al., STUDY ON WEAR RESISTANCE OF Al-Si ALLOY USING A 3- BODY DRY ABRASIVE WEAR TESTING MACHINE. Engineering Research & Technology, 2016. 4(10): p. 1-6.
25.Subbiah, P., Dry Sliding Wear Behaviour of Aluminium Alloy 6061-Redmud Metal Matrix Composites by Stir Casting Method. International Journal of Control and Automation, 2016. 9: p. 3797-3803.
26.Telle, R., Chapter 1 - Properties of Ceramics, in Handbook of Ceramics Grinding and Polishing, I.D. Marinescu, T.K. Doi, and E. Uhlmann, Editors. 2015, William Andrew Publishing: Boston. p. 1-49.
27.Shi, Y. and X. Wu, Research on Oxidation Wear Behavior of a New Hot Forging Die Steel. Journal of Materials Engineering and Performance, 2018. 27(1): p. 176-185.
28.An, Q., et al., Experimental investigation on hard milling of high strength steel using PVD-AlTiN coated cemented carbide tool. International Journal of Refractory Metals and Hard Materials, 2014. 43: p. 94-101.
29.Arndt, M. and T. Kacsich, Performance of new AlTiN coatings in dry and high speed cutting. Surface and Coatings Technology, 2003. 163-164: p. 674-680.
30.Fox-Rabinovich, G.S., et al., Design and performance of AlTiN and TiAlCrN PVD coatings for machining of hard to cut materials. Surface and Coatings Technology, 2009. 204(4): p. 489-496.
31.M.J. Jr, M.J., et al., Thin Solid Films, 2014. 556: p. 361-368.
32.Greczynski, G., et al., Selection of metal ion irradiation for controlling Ti1−xAlxN alloy growth via hybrid HIPIMS/magnetron co-sputtering. Vacuum, 2012. 86(8): p. 1036-1040.
33.Kalss, W., et al., Modern coatings in high performance cutting applications. International Journal of Refractory Metals and Hard Materials, 2006. 24(5): p. 399-404.
34.B. Warcholinski, A.G., J. Ratajski, Z. Kulinski, J. Rochowicz, Vacuum, 2012.
35.PalDey, S. and S.C. Deevi, Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review. Materials Science and Engineering: A, 2003. 342(1): p. 58-79.
36.Heinke, W., et al., Evaluation of PVD nitride coatings, using impact, scratch and Rockwell-C adhesion tests. Thin Solid Films, 1995. 270(1): p. 431-438.
37.Kang, M.C., J.S. Kim, and K.H. Kim, Cutting performance using high reliable device of Ti–Si–N-coated cutting tool for high-speed interrupted machining. Surface and Coatings Technology, 2005. 200(5): p. 1939-1944.
38.Zhang, Q., et al., Improving the mechanical and anti-wear properties of AlTiN coatings by the hybrid arc and sputtering deposition. Surface and Coatings Technology, 2019. 378: p. 125022.
39.Chen, L., et al., Improved properties of Ti-Al-N coating by multilayer structure. International Journal of Refractory Metals and Hard Materials, 2011. 29(6): p. 681-685.
40.Varghese, V., et al., Investigation on the performance of AlCrN and AlTiN coated cemented carbide inserts during end milling of maraging steel under dry, wet and cryogenic environments. Journal of Manufacturing Processes, 2019. 43: p. 136-144.
41.Shokrani, A. and S.T.J.M. Newman, A new cutting tool design for cryogenic machining of Ti–6Al–4V titanium alloy. 2019. 12(3): p. 477.
42.Santecchia, E., et al., Wear resistance investigation of titanium nitride-based coatings. Ceramics International, 2015. 41(9, Part A): p. 10349-10379.
43.Bobzin, K., et al., Plastic deformation behavior of nanostructured CrN/AlN multilayer coatings deposited by hybrid dcMS/HPPMS. Surface and Coatings Technology, 2017. 332: p. 253-261.
44.Pogrebnjak, A., et al., Multilayered vacuum-arc nanocomposite TiN/ZrN coatings before and after annealing: Structure, properties, first-principles calculations. Materials Characterization, 2017. 134: p. 55-63.
45.Shan, L., et al., Tribocorrosion behaviors of PVD CrN coated stainless steel in seawater. Wear, 2016. 362-363: p. 97-104.
46.Ruden, A., et al., Corrosion resistance of CrN thin films produced by dc magnetron sputtering. Applied Surface Science, 2013. 270: p. 150-156.
47.Aharonov, R.R., B.F. Coll, and R.P. Fontana, Properties of chromium nitride coatings deposited by cathodic arc evaporation. Surface and Coatings Technology, 1993. 61(1): p. 223-226.
48.Hurkmans, T., et al., Chromium nitride coatings grown by unbalanced magnetron (UBM) and combined arc/unbalanced magnetron (ABS™) deposition techniques. Surface and Coatings Technology, 1996. 86-87: p. 192-199.
49.Grant, W.K., et al., Characterization of hard chromium nitride coatings deposited by cathodic arc vapor deposition. Surface and Coatings Technology, 1996. 86-87: p. 788-796.
50.Piot, O., C. Gautier, and J. Machet, Comparative study of CrN coatings deposited by ion plating and vacuum arc evaporation. Influence of the nature and the energy of the layer-forming species on the structural and the mechanical properties. Surface and Coatings Technology, 1997. 94-95: p. 409-415.
51.He, X.-M., et al., Structure, hardness, and tribological properties of reactive magnetron sputtered chromium nitride films. Journal of Vacuum Science & Technology A, 2000. 18(1): p. 30-36.
52.Odén, M., et al., Microstructure and mechanical behavior of arc-evaporated Cr–N coatings. Surface and Coatings Technology, 1999. 114(1): p. 39-51.
53.Panjan, P., et al., PVD CrN coating for protection of extrusion dies. Vacuum, 2001. 61(2): p. 241-244.
54.Vetter, J., Vacuum arc coatings for tools: potential and application. Surface and Coatings Technology, 1995. 76-77: p. 719-724.
55.Du, J.W., et al., Influence of oxygen addition on the structure, mechanical and thermal properties of CrN coating. Surface and Coatings Technology, 2021. 411: p. 126992.
56.Chim, Y.C., et al., Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc. Thin Solid Films, 2009. 517(17): p. 4845-4849.
57.Hones, P., R. Sanjines, and F. Levy, Characterization of sputter-deposited chromium nitride thin films for hard coatings. Surface and Coatings Technology, 1997. 94-95: p. 398-402.
58.Mayrhofer, P.H., G. Tischler, and C. Mitterer, Microstructure and mechanical/thermal properties of Cr–N coatings deposited by reactive unbalanced magnetron sputtering. Surface and Coatings Technology, 2001. 142-144: p. 78-84.
59.Conde, A., et al., Characterisation of corrosion and wear behaviour of nanoscaled e-beam PVD CrN coatings. Surface and Coatings Technology, 2006. 201(6): p. 2690-2695.
60.Ehiasarian, A.P., et al., Comparison of microstructure and mechanical properties of chromium nitride-based coatings deposited by high power impulse magnetron sputtering and by the combined steered cathodic arc/unbalanced magnetron technique. Thin Solid Films, 2004. 457(2): p. 270-277.
61.Romero, J., et al., Nanometric chromium nitride/chromium carbide multilayers by r.f. magnetron sputtering. Surface and Coatings Technology, 2004. 180-181: p. 335-340.
62.Zhou, Y.M., et al., Sliding wear behavior of polycrystalline TiN/CrN multilayers against an alumina ball. Surface and Coatings Technology, 2000. 130(1): p. 9-14.
63.Sui, X., et al., Microstructure, mechanical and tribological characterization of CrN/DLC/Cr-DLC multilayer coating with improved adhesive wear resistance. Applied Surface Science, 2018. 439: p. 24-32.
64.Kong, Y., et al., Reprint of “Enhancement of toughness and wear resistance by CrN/CrCN multilayered coatings for wood processing”. Surface and Coatings Technology, 2018. 355: p. 318-327.
65.Labidi, C., et al., Surface treatments of tools used in industrial wood machining. Surface and Coatings Technology, 2005. 200(1): p. 118-122.
66.Cheng, Y.H., T. Browne, and B. Heckerman, Influence of CH4 fraction on the composition, structure, and internal stress of the TiCN coatings deposited by LAFAD technique. Vacuum, 2010. 85(1): p. 89-94.
67.Kim, S.M., et al., Evaluation of the high temperature characteristics of the CrZrN coatings. Surface and Coatings Technology, 2008. 202(22): p. 5521-5525.
68.Feng, X., et al., Structure, morphologies and mechanical properties study of Cr-Zr-N films. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2018. 436: p. 112-118.
69.Zhang, Z.G., et al., Microstructures and tribological properties of CrN/ZrN nanoscale multilayer coatings. Applied Surface Science, 2009. 255(7): p. 4020-4026.
70.Jin, J., H. Duan, and X. Li, The influence of plasma nitriding on microstructure and properties of CrN and CrNiN coatings on Ti6Al4V by magnetron sputtering. Vacuum, 2017. 136: p. 112-120.
71.Işıldak, Y.E., et al., Wear behavior of Ni-B coated-hard anodized Al7Si alloy and machining performance with ZrN ceramic film coated carbide tool. Surfaces and Interfaces, 2020. 21: p. 100768.
72.Lin, Z.-C. and C.-Y. Ho, Performance of coated tungsten carbide tools on milling printed circuit board. Journal of Materials Processing Technology, 2009. 209(1): p. 303-309.
73.翁詩瑤, 優化介層設計氮化鋁鈦鉻硬質薄膜之抗衝擊疲勞與機械性能分析, in 機械與電腦輔助工程系碩士班. 2018, 國立虎尾科技大學: 雲林縣. p. 109.74.Bouaouina, B., et al., Residual stress, mechanical and microstructure properties of multilayer Mo2N/CrN coating produced by R.F Magnetron discharge. Applied Surface Science, 2017. 395: p. 117-121.
75.植柏鈞, 鈦介層厚度對鍍覆於AISI D2鋼之氮化鈦鋯薄膜機械性質與耐磨性之影響, in 工程與系統科學系. 2017, 國立清華大學: 新竹市. p. 83.
76.Wieciński, P., et al., Failure and deformation mechanisms during indentation in nanostructured Cr/CrN multilayer coatings. Surface and Coatings Technology, 2014. 240: p. 23-31.
77.Berger, M., et al., The multilayer effect in abrasion — optimising the combination of hard and tough phases. Surface and Coatings Technology, 1999. 116-119: p. 1138-1144.
78.Imamura, S., et al., Properties and cutting performance of AlTiCrN/TiSiCN bilayer coatings deposited by cathodic-arc ion plating. Surface and Coatings Technology, 2007. 202(4): p. 820-825.
79.過玉清, PCB的數控鑽銑雕刻機制版. 管理與財富, 2009.6: p. 125.
80.黃俊瑋, 陰極電弧沉積鋁鈦矽鉻釩鋯高熵合金氮化物薄膜之機械性質研究, in 機械與電腦輔助工程系碩士班. 2020, 國立虎尾科技大學: 雲林縣. p. 86.81.Rahman, M., A. Senthil Kumar, and J.R.S. Prakash, Micro milling of pure copper. Journal of Materials Processing Technology, 2001. 116(1): p. 39-43.
82.Sorgato, M., R. Bertolini, and S. Bruschi, On the correlation between surface quality and tool wear in micro–milling of pure copper. Journal of Manufacturing Processes, 2020. 50: p. 547-560.
83.Jusman, Y., S.C. Ng, and N.A. Abu Osman, Investigation of CPD and HMDS Sample Preparation Techniques for Cervical Cells in Developing Computer-Aided Screening System Based on FE-SEM/EDX. The Scientific World Journal, 2014. 2014: p. 289817.
84.Ma, C.H., J.H. Huang, and H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction. Thin Solid Films, 2002. 418(2): p. 73-78.
85.Waeselmann, N., Structural transformations in complex perovskite-type relaxor and relaxor-based ferroelectrics at high pressures and temperatures. 2012.
86.Wang, Y., et al., Real-time synchrotron x-ray studies of low- and high-temperature nitridation of $c$-plane sapphire. Physical Review B, 2006. 74(23): p. 235304.
87.陳建淼 and 洪連輝, 穿透式電子顯微鏡. 科學 Online, 2009.
88.Kwiecińska, B., S. Pusz, and B.J. Valentine, Application of electron microscopy TEM and SEM for analysis of coals, organic-rich shales and carbonaceous matter. International Journal of Coal Geology, 2019. 211: p. 103203.
89.張育唐 and 陳藹然, 接觸角. 科學 Online, 2011.
90.張育唐 and 陳擖然, 接觸角(Contact Angle). 國科會高瞻自然科學教育資源平台.
91.I.S.I, Fine ceramics (advanced ceramics, advancd technical ceramics)-Rockwell indentation test for evaluation of adhesion of ceramic coatings. 2008. 2008.
92.Lenz, B., et al., Application of CNN networks for an automatic determination of critical loads in scratch tests on a-C:H:W coatings. Surface and Coatings Technology, 2020. 393: p. 125764.
93.李志偉, 明志科技大學 電漿與薄膜科技中心 薄膜與機械性質實驗室.
94.H. Hasselbruch, A.M., H.W. Zoch, Einfluss der Plasmanitrierparameter und anschließenden Oberflächenveredelung auf die Haftfestigkeit von Wolfram dotierten PVD-a-C:H-Schichtsystemen. 2017: p. 1-11.
95.Somiya, S., Advanced technical ceramics. 2012: Elsevier.
96.Larsson, P.-L.J.M., On the Invariance of Hardness at Vickers Indentation of Pre-Stressed Materials. 2017. 7(7): p. 260.
97.Quinn, G., Fracture Toughness of Ceramics by the Vickers Indentation Crack Length Method: A Critical Review. A Critical Review, 2006. 27: p. 45-62.
98.Saha, R. and W.D. Nix, Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Materialia, 2002. 50(1): p. 23-38.
99.Wu, H., et al., Nano-mechanical characterization of plasma surface tungstenized layer by depth-sensing nano-indentation measurement. Applied Surface Science, 2015. 324: p. 160-167.
100.Mayrhofer, P.H., et al., Structure, elastic properties and phase stability of Cr1–xAlxN. Acta Materialia, 2008. 56(11): p. 2469-2475.
101.Siow, P.C., et al., The study on the properties of TiCxN1−x coatings processed by cathodic arc physical vapour deposition. 2019.
102.FR4. 程陽有限公司.
103.Zhirkov, I., A. Petruhins, and J. Rosen, Effect of cathode composition and nitrogen pressure on macroparticle generation and type of arc discharge in a DC arc source with Ti–Al compound cathodes. Surface and Coatings Technology, 2015. 281: p. 20-26.
104.Atmani, T.D., et al., Parametric study of the mechanical properties of nanocrystalline TiN/CrN multilayer coatings with a special focus on the effect of coating thickness and substrate roughness. Surfaces and Interfaces, 2021. 23: p. 101001.
105.Zhou, H., et al., AlTiCrN coatings deposited by hybrid HIPIMS/DC magnetron co-sputtering. Vacuum, 2017. 136: p. 129-136.
106.Danek, M., et al., Influence of Cr additions on the structure and oxidation resistance of multilayered TiAlCrN films. Surface and Coatings Technology, 2017. 313: p. 158-167.
107.Gonzalez, E.D., et al., Impact of Zr content on the nanostructure, mechanical, and tribological behaviors of β-Ti-Nb-Zr ternary alloy coatings. Thin Solid Films, 2021. 721: p. 138565.
108.Janssen, G. and J.-D.J.A.p.l. Kamminga, Stress in hard metal films. 2004. 85(15): p. 3086-3088.
109.Mudau, Z., et al. Residual stress in polycrystalline thin Cr films deposited on fused silica substrates. in Proceedings of SAIP2014, the 59th Annual Conference of the South African Institute of Physics. 2014. University of Johannesburg.
110.Sheldon, B.W., et al., Competition between tensile and compressive stress mechanisms during Volmer-Weber growth of aluminum nitride films. 2005. 98(4): p. 043509.
111.Abadias, G., et al., Stress evolution in magnetron sputtered Ti–Zr–N and Ti–Ta–N films studied by in situ wafer curvature: Role of energetic particles. Thin Solid Films, 2009. 518(5): p. 1532-1537.
112.Buehler, M.J., A. Hartmaier, and H. Gao, Atomistic and continuum studies of crack-like diffusion wedges and associated dislocation mechanisms in thin films on substrates. Journal of the Mechanics and Physics of Solids, 2003. 51(11): p. 2105-2125.
113.Petrov, I., et al., Microstructural evolution during film growth. 2003. 21(5): p. S117-S128.
114.Zhou, Z.F., et al., High temperature oxidation of CrTiAlN hard coatings prepared by unbalanced magnetron sputtering. Thin Solid Films, 2009. 517(17): p. 5243-5247.
115.Ivashchenko, V., et al., First-principles quantum molecular dynamics study of TixZr1− xN (111)/SiNy heterostructures and comparison with experimental results. 2014. 15(2): p. 025007.
116.Marulanda, D.M., et al., The effect of bilayer period and degree of unbalancing on magnetron sputtered Cr/CrN nano-multilayer wear and corrosion. Thin Solid Films, 2011. 519(6): p. 1886-1893.
117.Leyland, A. and A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear, 2000. 246(1): p. 1-11.
118.Stueber, M., et al., Concepts for the design of advanced nanoscale PVD multilayer protective thin films. Journal of Alloys and Compounds, 2009. 483(1): p. 321-333.
119.Xu, Y.X., et al., Structure and thermal properties of TiAlN/CrN multilayered coatings with various modulation ratios. Surface and Coatings Technology, 2016. 304: p. 512-518.
120.Polcar, T. and A. Cavaleiro, High temperature behavior of nanolayered CrAlTiN coating: Thermal stability, oxidation, and tribological properties. Surface and Coatings Technology, 2014. 257: p. 70-77.
121.Li, Y., et al., Microstructure, adhesion and tribological properties of CrN/CrTiAlSiN/WCrTiAlN multilayer coatings deposited on nitrocarburized AISI 4140 steel. Surface and Coatings Technology, 2019. 362: p. 27-34.
122.Lu, Y.H., et al., Effects of B content and wear parameters on dry sliding wear behaviors of nanocomposite Ti–B–N thin films. Wear, 2007. 262(11): p. 1372-1379.
123.趙良展, 奈米多層氮化鋁鈦/氮化鉻鈦矽硬質薄膜之機械性質與切削加工性能, in 機械與電腦輔助工程系碩士班. 2019, 國立虎尾科技大學: 雲林縣. p. 123.124.Kamata, Y. and T. Obikawa, High speed MQL finish-turning of Inconel 718 with different coated tools. Journal of Materials Processing Technology, 2007. 192-193: p. 281-286.
125.Rowe, W.B., 17 - Mechanics of Abrasion and Wear, in Principles of Modern Grinding Technology (Second Edition), W.B. Rowe, Editor. 2014, William Andrew Publishing: Oxford. p. 349-379.
126.Khojier, K., et al., Structural, mechanical and tribological characterization of chromium oxide thin films prepared by post-annealing of Cr thin films. Applied Surface Science, 2013. 284: p. 489-496.