|
[1]經濟部產業技術司. (2023). 2023/2024產業技術白皮書 . 台經院. [2]KHOSHDARREGI, M. R., & ALTINTAS, Y. (2016). ACCESSING THE CUTTING FORCES IN MACHINING PROCESSES: AN OVERVIEW. PROCEDIA CIRP, 46, 601-606. [3]MA, J.-W., WANG, F.-J., JIA, Z.-Y., XU, Q., & YANG, Y.-Y. (2014). STUDY OF MACHINING PARAMETER OPTIMIZATION IN HIGH-SPEED MILLING OF INCONEL 718 CURVED SURFACE BASED ON CUTTING FORCE. INT. J. ADV. MANUF. TECHNOL., 75, 269–277. [4]TETI, R., JEMIELNIAK, K., O’DONNELL, G., DORNFELD, D. (2010). ADVANCED MONITORING OF MACHINING OPERATIONS. CIRP ANNALS, 59(2), 717-739. ISSN 0007-8506. DOI: 10.1016/J.CIRP.2010.05.010. [5]LIANG, Q., ZHANG, D., WU, W., & ZOU, K. (2016). METHODS AND RESEARCH FOR MULTI-COMPONENT CUTTING FORCE SENSING DEVICES AND APPROACHES IN MACHINING. SENSORS, 16, 1926. [6]SARAIE, H., SAKAHIRA, M., IBARAKI, S., MATSUBARA, A., KAKINO, Y., & FUJISHIMA, M. (2003). MONITORING AND ADAPTIVE CONTROL OF CUTTING FORCES BASED ON SPINDLE MOTOR AND SERVO MOTOR CURRENTS IN MACHINING CENTERS. [7]LIANG, Q., ZHANG, D., WU, W., & ZOU, K. (2016). DESIGN AND ANALYSIS OF A SENSORSYSTEM FOR CUTTING FORCE MEASUREMENT IN MACHINING PROCESSES. SENSORS,16(1), 70. [8]MATSUBARA, A., & IBARAKI, S. (2009). MONITORING AND CONTROL OF CUTTING FORCES IN MACHINING PROCESSES: A REVIEW. INTERNATIONAL JOURNAL OF AUTOMATION TECHNOLOGY, 3(4), 445-456. [9]RIZAL, M., GHANI, J. A., NUAWI, M. Z., & CHE HARON, C. H. (2015). DEVELOPMENT AND TESTING OF AN INTEGRATED ROTATING DYNAMOMETER ON TOOL HOLDER FOR MILLING PROCESS. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 52-53, 559-576. [10]LI Y, ZHAO Y, FEI J, ZHAO Y, LI X, GAO Y. DEVELOPMENT OF A TRI-AXIAL CUTTING FORCE SENSOR FOR THE MILLING PROCESS. SENSORS. 2016; 16(3):405. HTTPS://DOI.ORG/10.3390/S16030405 [11]SHLENS, J. (2014). TUTORIAL ON PRINCIPAL COMPONENT ANALYSIS. [12]SWATHI, P., & POTHUGANTI, KARUNAKAR. (2020). OVERVIEW ON PRINCIPAL COMPONENT ANALYSIS ALGORITHM IN MACHINE LEARNING. INTERNATIONAL RESEARCH JOURNAL OF MODERNIZATION IN ENGINEERING TECH-NOLOGY AND SCIENCE, 2.10, 241-246. [13]GUYON, I., & ELISSEEFF, A. (2003). AN INTRODUCTION TO VARIABLE AND FEATURE SELECTION. JOURNAL OF MACHINE LEARNING RESEARCH, 3, 1157-1182. [14]BREIMAN, L. (2001). RANDOM FORESTS. MACHINE LEARNING, 45(1), 5-32. [15]FRIEDMAN, J. H. (1999). GREEDY FUNCTION APPROXIMATION: A GRADIENT BOOSTING MACHINE. ANNALS OF STATISTICS, 29(5), 1189-1232. [16]LOGISTIC REGRESSION: AN OVERVIEW. LAWRENCE M. HEALY. EASTERN MICHIGAN UNIVERSITY, COLLEGE OF TECHNOLOGY, MARCH 20, 2006. [17]MACQUEEN, J. (1967). SOME METHODS FOR CLASSIFICATION AND ANALYSIS OF MULTIVARIATE OBSERVATIONS. IN PROCEEDINGS OF THE FIFTH BERKELEY SYMPOSIUM ON MATHEMATICAL STATISTICS AND PROBABILITY, VOLUME 1: STATISTICS (PP. 281-297). UNIVERSITY OF CALIFORNIA PRESS. [18]ROYAL HOLLOWAY, UNIVERSITY OF LONDON COMPUTER LEARNING LAB. (N.D.). SUPPORT VECTOR MACHINES. RETRIEVED OCTOBER 11, 2023, FROM HTTPS://CML.RHUL.AC.UK/SVM.HTML# [19]NASSIF, A. B., ABU TALIB, M., NASIR, Q. M. H., & DAKALBAB, F. (2021). MACHINE LEARNING FOR ANOMALY DETECTION: A SYSTEMATIC REVIEW. IEEE ACCESS, PP(99), 1-1. [20]LI, Y., & LUO, Y. (2020). PERFORMANCE-WEIGHTED-VOTING MODEL: AN ENSEMBLE MACHINE LEARNING METHOD FOR CANCER TYPE CLASSIFICATION USING WHOLE-EXOME SEQUENCING MUTATION. QUANTITATIVE BIOLOGY (BEIJING, CHINA), 8(4), 347–358. HTTPS://DOI.ORG/10.1007/S40484-020-0226-1 [21]OSAMOR, V. C., & OKEZIE, A. F. (2021). ENHANCING THE WEIGHTED VOTING ENSEMBLE ALGORITHM FOR TUBERCULOSIS PREDICTIVE DIAGNOSIS. SCIENTIFIC REPORTS, 11(14806). [22]SARMENTO, R., & COSTA, V. (2017). INTRODUCTION TO LINEAR REGRESSION. IN DOI: 10.4018/978-1-68318-016-6.CH006 [23]PLATT, J. C. (1999). PROBABILISTIC OUTPUTS FOR SUPPORT VECTOR MACHINES AND COMPARISONS TO REGULARIZED LIKELIHOOD METHODS. IN ADVANCES IN LARGE MARGIN CLASSIFIERS. [24] SARHAN, A. A. D., MATSUBARA, A., SUGIHARA, M., SARAIE, H., IBARAKI, S., & KAKINO, Y. (2006). MONITORING METHOD OF CUTTING FORCE BY USING ADDITIONAL SPINDLE SENSORS. JSME INTERNATIONAL JOURNAL SERIES C, 49(2).
|