第六章 參考文獻
[1]I. Goodfellow. Nips,2016,Generative adversarial networks,
https://arxiv.org/abs/1701.00160
[2] Alec Radford & Luke Metz, Soumith Chintala,2016, UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS, https://arxiv.org/pdf/1511.06434.pdf
[3]Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero,
Andrew Cunningham,Alejandro Acosta,Andrew Aitken,Alykhan Tejani,
Johannes Totz,Zehan Wang,Wenzhe Shi,2016,Photo-Realistic Single Image
Super-Resolution Using a Generative Adversarial Network,
https://arxiv.org/abs/1609.04802
[4]Mehdi S. M. Sajjadi, Bernhard Schölkopf, Michael Hirsch,2016,EnhanceNet: Single Image Super-Resolution Through Automated Texture Synthesis, https://arxiv.org/abs/1612.07919
[5]Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun,2015,Deep Residual Learning for Image Recognition,https://arxiv.org/abs/1512.03385
[6]Karen Simonyan & Andrew Zisserman,2015,Very Deep Convolutional Networks For Large-Scale Image Recognition,https://arxiv.org/abs/1409.1556
[7]Mehdi S. M. Sajjadi,Raviteja Vemulapalli,Matthew Brown,2018,Frame-Recurrent Video Super-Resolution,https://arxiv.org/abs/1801.04590v4
[8]Ben Mildenhall,Pratul P. Srinivasan,Matthew Tancik,Jonathan T. Barron,Ravi Ramamoorthi,Ren Ng,2020, Representing Scenes as Neural Radiance Fields for View Synthesis,https://arxiv.org/abs/2003.08934v2
[9]宋宜蓁,2018,基於視覺損失函數之單張超解析度影像,國立高雄科技大學,碩士論文。[10] Sebastian Raschka,2016,Python機器學習,博碩文化股份有限公司,新北。
[11]林大貴,2017,Tensorflow+Keras深度學習人工智慧實務應用,博碩文化股份有限公司,新北。
[12]斎藤康毅,2017,用PYTHON進行深度學習的基礎理論實作,碁峰資訊股份有限公司,臺北。
[13]邢夢來、王碩、孫洋洋,2018,PyTorch深度學習與自然語言中文處理,博碩文化股份有限公司,臺北。
[14]陳雲,2018,比Tensorflow還精美的人工智慧套件PyTorch讓你愛不釋手,佳魁資訊,臺北。
[15]廖星宇,2018,PYTORCH更好用更強大更易懂,深石數位,臺北。
[16]文淵閣工作室,2016,Python初學特訓班,碁峰資訊股份有限公司,臺北。
[17]李宏毅,2017,GAN Lecture 1 (2017): Introduction of Generative Adversarial Network(GAN),https://www.youtube.com/watch?v=G0dZc-8yIjE&list=PLJV_el3uVTsMd2G9ZjcpJn1YfnM9wVOBf&index=1
[18]周沫凡,2016,莫煩Python,https://morvanzhou.github.io/,澳洲。
[19]Ben Hu,(深度學習)ResNet之殘差學習,https://medium.com/@hupinwei/深度學習-resnet之殘差學習-f3ac36701b2f
[20]Dot CSV,¡Aumentando RESOLUCIÓN con Inteligencia Artificial! (SuperResolución), https://www.youtube.com/watch?v=dPYwr8fihH0&list=FL6fDPQX1Hw3dMQkVBkNbd6A&index=4&t=546s
[21]Ray Lin,Activation Function: ReLU & Maxout,https://medium.com/%E5%AD%B8%E4%BB%A5%E5%BB%A3%E6%89%8D/activation-function-relu-maxout-f958f066fbfa
[22]Martin Huang,AlexNet小簡介(3) — Local Response Normalization(LRN),https://martin12345m.medium.com/alexnet%E5%B0%8F%E7%B0%A1%E4%BB%8B-3-local-response-normalization-lrn-a0af4e5fdafd