|
1.Chawla, N., Recent advances in air-battery chemistries. Materials Today Chemistry, 2019. 12: p. 324-331. 2.Liu, Q., Z. Pan, E. Wang, L. An, and G. Sun, Aqueous metal-air batteries: Fundamentals and applications. Energy Storage Materials, 2020. 27: p. 478-505. 3.Wang, H.-F. and Q. Xu, Materials Design for Rechargeable Metal-Air Batteries. Matter, 2019. 1(3): p. 565-595. 4.Li, Y. and J. Lu, Metal–Air Batteries: Will They Be the Future Electrochemical Energy Storage Device of Choice? ACS Energy Letters, 2017. 2(6): p. 1370-1377. 5.Zhang, X., X.-G. Wang, Z. Xie, and Z. Zhou, Recent progress in rechargeable alkali metal–air batteries. Green Energy & Environment, 2016. 1(1): p. 4-17. 6.Rahman, M.A., X. Wang, and C. Wen, High Energy Density Metal-Air Batteries: A Review. Journal of The Electrochemical Society, 2013. 160(10): p. A1759-A1771. 7.Mohammed-Ibrahim, J., A review on NiFe-based electrocatalysts for efficient alkaline oxygen evolution reaction. Journal of Power Sources, 2020. 448. 8.Sun, H., J.-M. Yang, J.-G. Li, Z. Li, X. Ao, Y.-Z. Liu, Y. Zhang, Y. Li, C. Wang, and J. Tang, Synergistic coupling of NiTe nanoarrays with RuO2 and NiFe-LDH layers for high-efficiency electrochemical-/photovoltage-driven overall water splitting. Applied Catalysis B: Environmental, 2020. 272. 9.Tang, D., J. Liu, X. Wu, R. Liu, X. Han, Y. Han, H. Huang, Y. Liu, and Z. Kang, Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation. ACS Appl Mater Interfaces, 2014. 6(10): p. 7918-25. 10.Wang, Z., F. Zhang, H. Zou, Y. Yuan, H. Wang, J. Xia, and Z. Wang, Preparation of a Pt/NiFe layered double hydroxide/reduced graphene oxide composite as an electrocatalyst for methanol oxidation. Journal of Electroanalytical Chemistry, 2018. 818: p. 198-203. 11.Youn, D.H., Y.B. Park, J.Y. Kim, G. Magesh, Y.J. Jang, and J.S. Lee, One-pot synthesis of NiFe layered double hydroxide/reduced graphene oxide composite as an efficient electrocatalyst for electrochemical and photoelectrochemical water oxidation. Journal of Power Sources, 2015. 294: p. 437-443. 12.Capsoni, D., M. Bini, S. Ferrari, E. Quartarone, and P. Mustarelli, Recent advances in the development of Li–air batteries. Journal of Power Sources, 2012. 220: p. 253-263. 13.Kraytsberg, A. and Y. Ein-Eli, Review on Li–air batteries—Opportunities, limitations and perspective. Journal of Power Sources, 2011. 196(3): p. 886-893. 14.Yang, S., P. He, and H. Zhou, Research progresses on materials and electrode design towards key challenges of Li-air batteries. Energy Storage Materials, 2018. 13: p. 29-48. 15.Lee, J.-S., S. Tai Kim, R. Cao, N.-S. Choi, M. Liu, K.T. Lee, and J. Cho, Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air. Advanced Energy Materials, 2011. 1(1): p. 34-50. 16.Tan, P., B. Chen, H. Xu, H. Zhang, W. Cai, M. Ni, M. Liu, and Z. Shao, Flexible Zn– and Li–air batteries: recent advances, challenges, and future perspectives. Energy Environ. Sci., 2017. 10(10): p. 2056-2080. 17.Goel, P., D. Dobhal, and R.C. Sharma, Aluminum–air batteries: A viability review. Journal of Energy Storage, 2020. 28. 18.Jayaprakash, N., S.K. Das, and L.A. Archer, The rechargeable aluminum-ion battery. Chem Commun (Camb), 2011. 47(47): p. 12610-2. 19.Liu, Y., Q. Sun, W. Li, K.R. Adair, J. Li, and X. Sun, A comprehensive review on recent progress in aluminum–air batteries. Green Energy & Environment, 2017. 2(3): p. 246-277. 20.Li, C.-S., Y. Sun, F. Gebert, and S.-L. Chou, Current Progress on Rechargeable Magnesium-Air Battery. Advanced Energy Materials, 2017. 7(24). 21.Zhang, L., Q. Shao, and J. Zhang, An overview of non-noble metal electrocatalysts and their associated air cathodes for Mg-air batteries. Materials Reports: Energy, 2021. 1(1). 22.Zhang, T., Z. Tao, and J. Chen, Magnesium–air batteries: from principle to application. Mater. Horiz., 2014. 1(2): p. 196-206. 23.Arafat, Y., M.R. Azhar, Y. Zhong, M.O. Tadé, and Z. Shao, Metal-free carbon based air electrodes for Zn-air batteries: Recent advances and perspective. Materials Research Bulletin, 2021. 140. 24.Fang, W., J. Zhao, W. Zhang, P. Chen, Z. Bai, and M. Wu, Recent progress and future perspectives of flexible Zn-Air batteries. Journal of Alloys and Compounds, 2021. 869. 25.Fu, J., Z.P. Cano, M.G. Park, A. Yu, M. Fowler, and Z. Chen, Electrically Rechargeable Zinc-Air Batteries: Progress, Challenges, and Perspectives. Adv Mater, 2017. 29(7). 26.Li, Y. and H. Dai, Recent advances in zinc-air batteries. Chem Soc Rev, 2014. 43(15): p. 5257-75. 27.Lin, C., S.S. Shinde, Y. Wang, Y. Sun, S. Chen, H. Zhang, X. Li, and J.-H. Lee, Flexible and rechargeable Zn–air batteries based on green feedstocks with 75% round-trip efficiency. Sustainable Energy & Fuels, 2017. 1(9): p. 1909-1914. 28.Pei, P., K. Wang, and Z. Ma, Technologies for extending zinc–air battery’s cyclelife: A review. Applied Energy, 2014. 128: p. 315-324. 29.Tsehaye, M.T., F. Alloin, C. Iojoiu, R.A. Tufa, D. Aili, P. Fischer, and S. Velizarov, Membranes for zinc-air batteries: Recent progress, challenges and perspectives. Journal of Power Sources, 2020. 475. 30.Xu, M., D.G. Ivey, Z. Xie, and W. Qu, Rechargeable Zn-air batteries: Progress in electrolyte development and cell configuration advancement. Journal of Power Sources, 2015. 283: p. 358-371. 31.Ren, S., X. Duan, S. Liang, M. Zhang, and H. Zheng, Bifunctional electrocatalysts for Zn–air batteries: recent developments and future perspectives. Journal of Materials Chemistry A, 2020. 8(13): p. 6144-6182. 32.Zhou, Y., X. Wang, X. Shen, Y. Shi, C. Zhu, S. Zeng, H. Xu, P. Cao, Y. Wang, J. Di, and Q. Li, 3D confined zinc plating/stripping with high discharge depth and excellent high-rate reversibility. Journal of Materials Chemistry A, 2020. 8(23): p. 11719-11727. 33.Yu, Y., W. Xu, X. Liu, and X. Lu, Challenges and Strategies for Constructing Highly Reversible Zinc Anodes in Aqueous Zinc‐Ion Batteries: Recent Progress and Future Perspectives. Advanced Sustainable Systems, 2020. 4(9). 34.Han, C., W. Li, H.K. Liu, S. Dou, and J. Wang, Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries. Nano Energy, 2020. 74. 35.Zuo, Y., K. Wang, P. Pei, M. Wei, X. Liu, Y. Xiao, and P. Zhang, Zinc dendrite growth and inhibition strategies. Materials Today Energy, 2021. 20. 36.101 年度 國內外及中國大陸經濟研究及策略規劃 工作項目六 原物料價格調查分析 P.131. 37.SMM上海有色:https://hq.smm.cn/new-energy/category/201102250219. 38.Lee, C.W., K. Sathiyanarayanan, S.W. Eom, and M.S. Yun, Novel alloys to improve the electrochemical behavior of zinc anodes for zinc/air battery. Journal of Power Sources, 2006. 160(2): p. 1436-1441. 39.Caramia, V. and B. Bozzini, Materials science aspects of zinc–air batteries: a review. Materials for Renewable and Sustainable Energy, 2014. 3(2). 40.Zhang, J., X.L. Li, S. Fan, S. Huang, D. Yan, L. Liu, P. Valdivia y Alvarado, and H.Y. Yang, 3D-printed functional electrodes towards Zn-Air batteries. Materials Today Energy, 2020. 16. 41.Hosseini, S., S. Masoudi Soltani, and Y.-Y. Li, Current status and technical challenges of electrolytes in zinc–air batteries: An in-depth review. Chemical Engineering Journal, 2021. 408. 42.Mainar, A.R., E. Iruin, L.C. Colmenares, A. Kvasha, I. de Meatza, M. Bengoechea, O. Leonet, I. Boyano, Z. Zhang, and J.A. Blazquez, An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc. Journal of Energy Storage, 2018. 15: p. 304-328. 43.Shang, W., W. Yu, Y. Liu, R. Li, Y. Dai, C. Cheng, P. Tan, and M. Ni, Rechargeable alkaline zinc batteries: Progress and challenges. Energy Storage Materials, 2020. 31: p. 44-57. 44.R. Mainar, A., O. Leonet, M. Bengoechea, I. Boyano, I. de Meatza, A. Kvasha, A. Guerfi, and J. Alberto Blázquez, Alkaline aqueous electrolytes for secondary zinc-air batteries: an overview. International Journal of Energy Research, 2016. 40(8): p. 1032-1049. 45.Cairns*, F.R.M.a.E.J., The Secondary Alkaline Zinc Electrode. 46.Sapkota, P. and H. Kim, Zinc–air fuel cell, a potential candidate for alternative energy. Journal of Industrial and Engineering Chemistry, 2009. 15(4): p. 445-450. 47.Hwang, B., E.-S. Oh, and K. Kim, Observation of electrochemical reactions at Zn electrodes in Zn-air secondary batteries. Electrochimica Acta, 2016. 216: p. 484-489. 48.White*, D.M.S.a.R.E., Temperature and Concentration Dependence of the Specific Conductivity of Concentrated Solutions of Potassium Hydroxide. 1997. 49.Mokaddem, M., P. Volovitch, and K. Ogle, The anodic dissolution of zinc and zinc alloys in alkaline solution. I. Oxide formation on electrogalvanized steel. Electrochimica Acta, 2010. 55(27): p. 7867-7875. 50.Sumboja, A., X. Ge, G. Zheng, F.W.T. Goh, T.S.A. Hor, Y. Zong, and Z. Liu, Durable rechargeable zinc-air batteries with neutral electrolyte and manganese oxide catalyst. Journal of Power Sources, 2016. 332: p. 330-336. 51.Thomas Goh, F.W., Z. Liu, T.S.A. Hor, J. Zhang, X. Ge, Y. Zong, A. Yu, and W. Khoo, A Near-Neutral Chloride Electrolyte for Electrically Rechargeable Zinc-Air Batteries. Journal of The Electrochemical Society, 2014. 161(14): p. A2080-A2086. 52.Clark, S., A. Latz, and B. Horstmann, Rational Development of Neutral Aqueous Electrolytes for Zinc-Air Batteries. ChemSusChem, 2017. 10(23): p. 4735-4747. 53.J. JINDRA, J.M.A.M.M., Zinc-air cell with neutral electrolyte. 1973. 54.Hu, Z., Effect of Electrolyte Composition on Zn Electrode in Weak Acidic Aqueous Electrolyte. International Journal of Electrochemical Science, 2016: p. 8571-8580. 55.Mohamad, A.A., Zn/gelled 6M KOH/O2 zinc–air battery. Journal of Power Sources, 2006. 159(1): p. 752-757. 56.Ortiz-Martínez, V.M., L. Gómez-Coma, G. Pérez, A. Ortiz, and I. Ortiz, The roles of ionic liquids as new electrolytes in redox flow batteries. Separation and Purification Technology, 2020. 252. 57.Ma, L., S. Chen, N. Li, Z. Liu, Z. Tang, J.A. Zapien, S. Chen, J. Fan, and C. Zhi, Hydrogen-Free and Dendrite-Free All-Solid-State Zn-Ion Batteries. Adv Mater, 2020. 32(14): p. e1908121. 58.Hwang, H.J., W.S. Chi, O. Kwon, J.G. Lee, J.H. Kim, and Y.G. Shul, Selective Ion Transporting Polymerized Ionic Liquid Membrane Separator for Enhancing Cycle Stability and Durability in Secondary Zinc-Air Battery Systems. ACS Appl Mater Interfaces, 2016. 8(39): p. 26298-26308. 59.Xu, J.J., H. Ye, and J. Huang, Novel zinc ion conducting polymer gel electrolytes based on ionic liquids. Electrochemistry Communications, 2005. 7(12): p. 1309-1317. 60.Kumar, G., Electrochemical characterization of poly(vinylidenefluoride)-zinc triflate gel polymer electrolyte and its application in solid-state zinc batteries. Solid State Ionics, 2003. 160(3-4): p. 289-300. 61.Guo, Y., Y.-N. Chen, H. Cui, and Z. Zhou, Bifunctional electrocatalysts for rechargeable Zn-air batteries. Chinese Journal of Catalysis, 2019. 40(9): p. 1298-1310. 62.Wang, Y.-J., H. Fan, A. Ignaszak, L. Zhang, S. Shao, D.P. Wilkinson, and J. Zhang, Compositing doped-carbon with metals, non-metals, metal oxides, metal nitrides and other materials to form bifunctional electrocatalysts to enhance metal-air battery oxygen reduction and evolution reactions. Chemical Engineering Journal, 2018. 348: p. 416-437. 63.Dai, Y., J. Yu, C. Cheng, P. Tan, and M. Ni, Mini-review of perovskite oxides as oxygen electrocatalysts for rechargeable zinc–air batteries. Chemical Engineering Journal, 2020. 397. 64.Wu, M., G. Zhang, M. Wu, J. Prakash, and S. Sun, Rational design of multifunctional air electrodes for rechargeable Zn–Air batteries: Recent progress and future perspectives. Energy Storage Materials, 2019. 21: p. 253-286. 65.Worku, A.K., D.W. Ayele, and N.G. Habtu, Recent advances and future perspectives in engineering of bifunctional electrocatalysts for rechargeable zinc–air batteries. Materials Today Advances, 2021. 9. 66.Ye, L., Y. Hong, M. Liao, B. Wang, D. Wei, H. Peng, L. Ye, Y. Hong, M. Liao, B. Wang, D. Wei, and H. Peng, Recent advances in flexible fiber-shaped metal-air batteries. Energy Storage Materials, 2020. 28: p. 364-374. 67.Wei, L., E.H. Ang, Y. Yang, Y. Qin, Y. Zhang, M. Ye, Q. Liu, and C.C. Li, Recent advances of transition metal based bifunctional electrocatalysts for rechargeable zinc-air batteries. Journal of Power Sources, 2020. 477. 68.Du, Q., Y. Gong, M.A. Khan, D. Ye, J. Fang, H. Zhao, and J. Zhang, Regulating non-precious transition metal nitrides bifunctional electrocatalysts through surface/interface nanoengineering for air-cathodes of Zn-air batteries. Green Energy & Environment, 2021. 69.Neburchilov, V., H. Wang, J.J. Martin, and W. Qu, A review on air cathodes for zinc–air fuel cells. Journal of Power Sources, 2010. 195(5): p. 1271-1291. 70.Zhu, B., D. Xia, and R. Zou, Metal-organic frameworks and their derivatives as bifunctional electrocatalysts. Coordination Chemistry Reviews, 2018. 376: p. 430-448. 71.Du, L., L. Xing, G. Zhang, and S. Sun, Metal-organic framework derived carbon materials for electrocatalytic oxygen reactions: Recent progress and future perspectives. Carbon, 2020. 156: p. 77-92. 72.Yang, D., L. Zhang, X. Yan, and X. Yao, Recent Progress in Oxygen Electrocatalysts for Zinc-Air Batteries. Small Methods, 2017. 1(12). 73.Zang, W., A. Sumboja, Y. Ma, H. Zhang, Y. Wu, S. Wu, H. Wu, Z. Liu, C. Guan, J. Wang, and S.J. Pennycook, Single Co Atoms Anchored in Porous N-Doped Carbon for Efficient Zinc−Air Battery Cathodes. ACS Catalysis, 2018. 8(10): p. 8961-8969. 74.Zhang, H., G. Liu, L. Shi, and J. Ye, Single-Atom Catalysts: Emerging Multifunctional Materials in Heterogeneous Catalysis. Advanced Energy Materials, 2018. 8(1). 75.Chen, Y., S. Ji, C. Chen, Q. Peng, D. Wang, and Y. Li, Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications. Joule, 2018. 2(7): p. 1242-1264. 76.Song, K., J. Jung, Y.U. Heo, Y.C. Lee, K. Cho, and Y.M. Kang, alpha-MnO2 nanowire catalysts with ultra-high capacity and extremely low overpotential in lithium-air batteries through tailored surface arrangement. Phys Chem Chem Phys, 2013. 15(46): p. 20075-9. 77.Hao, L., S. Zhang, R. Liu, J. Ning, G. Zhang, and L. Zhi, Bottom-up construction of triazine-based frameworks as metal-free electrocatalysts for oxygen reduction reaction. Adv Mater, 2015. 27(20): p. 3190-5. 78.Liang, Y., Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, and H. Dai, Co(3)O(4) nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater, 2011. 10(10): p. 780-6. 79.Zahoor, A., H.S. Jang, J.S. Jeong, M. Christy, Y.J. Hwang, and K.S. Nahm, A comparative study of nanostructured α and δ MnO2 for lithium oxygen battery application. RSC Advances, 2014. 4(18). 80.Hardin, W.G., D.A. Slanac, X. Wang, S. Dai, K.P. Johnston, and K.J. Stevenson, Highly Active, Nonprecious Metal Perovskite Electrocatalysts for Bifunctional Metal-Air Battery Electrodes. J Phys Chem Lett, 2013. 4(8): p. 1254-9. 81.Zahoor, A., M. Christy, H. Jang, K.S. Nahm, and Y.S. Lee, Increasing the reversibility of Li–O2 batteries with caterpillar structured α–MnO2/N–GNF bifunctional electrocatalysts. Electrochimica Acta, 2015. 157: p. 299-306. 82.Hu, X., F. Cheng, X. Han, T. Zhang, and J. Chen, Oxygen bubble-templated hierarchical porous epsilon-MnO2 as a superior catalyst for rechargeable Li-O2 batteries. Small, 2015. 11(7): p. 809-13. 83.Suntivich, J., K.J. May, H.A. Gasteiger, J.B. Goodenough, and Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science, 2011. 334(6061): p. 1383-5. 84.Liu, Z.Q., H. Cheng, N. Li, T.Y. Ma, and Y.Z. Su, ZnCo2 O4 Quantum Dots Anchored on Nitrogen-Doped Carbon Nanotubes as Reversible Oxygen Reduction/Evolution Electrocatalysts. Adv Mater, 2016. 28(19): p. 3777-84. 85.Lee, D.U., H.W. Park, M.G. Park, V. Ismayilov, and Z. Chen, Synergistic bifunctional catalyst design based on perovskite oxide nanoparticles and intertwined carbon nanotubes for rechargeable zinc-air battery applications. ACS Appl Mater Interfaces, 2015. 7(1): p. 902-10. 86.Yongye Liang, H.W., 1§ Peng Diao,1§ Wesley Chang,1 Guosong Hong1, Yanguang Li,1 Ming Gong,1 Liming Xie,1 Jigang Zhou,2 Jian Wang,2 Tom Z. Regier,2 Fei Wei3 and Hongjie Dai1, Oxygen Reduction Electrocatalyst Based on Strongly Coupled Cobalt Oxide Nanocrystals and Carbon Nanotubes. 87.Li, B., X. Ge, F.W. Goh, T.S. Hor, D. Geng, G. Du, Z. Liu, J. Zhang, X. Liu, and Y. Zong, Co3O4 nanoparticles decorated carbon nanofiber mat as binder-free air-cathode for high performance rechargeable zinc-air batteries. Nanoscale, 2015. 7(5): p. 1830-8. 88.Zhong, X., W. Yi, Y. Qu, L. Zhang, H. Bai, Y. Zhu, J. Wan, S. Chen, M. Yang, L. Huang, M. Gu, H. Pan, and B. Xu, Co single-atom anchored on Co3O4 and nitrogen-doped active carbon toward bifunctional catalyst for zinc-air batteries. Applied Catalysis B: Environmental, 2020. 260. 89.Sun, T., J. Wang, C. Qiu, X. Ling, B. Tian, W. Chen, and C. Su, B, N Codoped and Defect-Rich Nanocarbon Material as a Metal-Free Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions. Adv Sci (Weinh), 2018. 5(7): p. 1800036. 90.Liang, K., L. Wang, Y. Xu, Y. Fang, Y. Fang, W. Xia, and Y.-N. Liu, Carbon dots self-decorated heteroatom-doped porous carbon with superior electrocatalytic activity for oxygen reduction. Electrochimica Acta, 2020. 335. 91.Zhu, J. and S. Mu, Defect Engineering in Carbon‐Based Electrocatalysts: Insight into Intrinsic Carbon Defects. Advanced Functional Materials, 2020. 30(25). 92.Zhang, Y., L. Tao, C. Xie, D. Wang, Y. Zou, R. Chen, Y. Wang, C. Jia, and S. Wang, Defect Engineering on Electrode Materials for Rechargeable Batteries. Adv Mater, 2020. 32(7): p. e1905923. 93.Zhu, J., Y. Huang, W. Mei, C. Zhao, C. Zhang, J. Zhang, I.S. Amiinu, and S. Mu, Effects of Intrinsic Pentagon Defects on Electrochemical Reactivity of Carbon Nanomaterials. Angew Chem Int Ed Engl, 2019. 58(12): p. 3859-3864. 94.Long, C., L. Jiang, X. Wu, Y. Jiang, D. Yang, C. Wang, T. Wei, and Z. Fan, Facile synthesis of functionalized porous carbon with three-dimensional interconnected pore structure for high volumetric performance supercapacitors. Carbon, 2015. 93: p. 412-420. 95.Zhu, X., C. Hu, R. Amal, L. Dai, and X. Lu, Heteroatom-doped carbon catalysts for zinc–air batteries: progress, mechanism, and opportunities. Energy & Environmental Science, 2020. 13(12): p. 4536-4563. 96.Jia, Y., L. Zhang, L. Zhuang, H. Liu, X. Yan, X. Wang, J. Liu, J. Wang, Y. Zheng, Z. Xiao, E. Taran, J. Chen, D. Yang, Z. Zhu, S. Wang, L. Dai, and X. Yao, Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nature Catalysis, 2019. 2(8): p. 688-695. 97.Liu, Z., Z. Zhao, Y. Wang, S. Dou, D. Yan, D. Liu, Z. Xia, and S. Wang, In Situ Exfoliated, Edge-Rich, Oxygen-Functionalized Graphene from Carbon Fibers for Oxygen Electrocatalysis. Adv Mater, 2017. 29(18). 98.Shen, A., Y. Zou, Q. Wang, R.A. Dryfe, X. Huang, S. Dou, L. Dai, and S. Wang, Oxygen reduction reaction in a droplet on graphite: direct evidence that the edge is more active than the basal plane. Angew Chem Int Ed Engl, 2014. 53(40): p. 10804-8. 99.Jiang, Y., L. Yang, T. Sun, J. Zhao, Z. Lyu, O. Zhuo, X. Wang, Q. Wu, J. Ma, and Z. Hu, Significant Contribution of Intrinsic Carbon Defects to Oxygen Reduction Activity. ACS Catalysis, 2015. 5(11): p. 6707-6712. 100.Kong, F., Y. Qiao, C. Zhang, X. Fan, A. Kong, and Y. Shan, Unadulterated carbon as robust multifunctional electrocatalyst for overall water splitting and oxygen transformation. Nano Research, 2020. 13(2): p. 401-411. 101.Jiang, D.E., B.G. Sumpter, and S. Dai, Unique chemical reactivity of a graphene nanoribbon's zigzag edge. J Chem Phys, 2007. 126(13): p. 134701. 102.Jiang, H., J. Gu, X. Zheng, M. Liu, X. Qiu, L. Wang, W. Li, Z. Chen, X. Ji, and J. Li, Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy & Environmental Science, 2019. 12(1): p. 322-333. 103.Li, Y., K. Xu, Q. Zhang, Z. Zheng, S. Li, Q. Zhao, C. Li, C. Dong, Z. Mei, F. Pan, and S. Dou, One-pot synthesis of FeNxC as efficient catalyst for high-performance zinc-air battery. Journal of Energy Chemistry, 2021. 104.Ramakrishnan, S., J. Balamurugan, M. Vinothkannan, A.R. Kim, S. Sengodan, and D.J. Yoo, Nitrogen-doped graphene encapsulated FeCoMoS nanoparticles as advanced trifunctional catalyst for water splitting devices and zinc–air batteries. Applied Catalysis B: Environmental, 2020. 279. 105.Liang, Y., Q. Gong, X. Sun, N. Xu, P. Gong, and J. Qiao, Rational fabrication of thin-layered NiCo2S4 loaded graphene as bifunctional non-oxide catalyst for rechargeable zinc-air batteries. Electrochimica Acta, 2020. 342. 106.Xu, N., J. Qiao, Q. Nie, M. Wang, H. Xu, Y. Wang, and X.-D. Zhou, CoFe2O4 nanoparticles decorated carbon nanotubes: Air-cathode bifunctional catalysts for rechargeable zinc-air batteries. Catalysis Today, 2018. 318: p. 144-149. 107.Xiao, C., J. Luo, M. Tan, Y. Xiao, B. Gao, Y. Zheng, and B. Lin, Co/CoN decorated nitrogen-doped porous carbon derived from melamine sponge as highly active oxygen electrocatalysts for zinc-air batteries. Journal of Power Sources, 2020. 453. 108.Wang, Z., J. Ang, J. Liu, X.Y.D. Ma, J. Kong, Y. Zhang, T. Yan, and X. Lu, FeNi alloys encapsulated in N-doped CNTs-tangled porous carbon fibers as highly efficient and durable bifunctional oxygen electrocatalyst for rechargeable zinc-air battery. Applied Catalysis B: Environmental, 2020. 263. 109.Wu, M., G. Zhang, Y. Hu, J. Wang, T. Sun, T. Regier, J. Qiao, and S. Sun, Graphitic‐shell encapsulated FeNi alloy/nitride nanocrystals on biomass‐derived N‐doped carbon as an efficient electrocatalyst for rechargeable Zn‐air battery. Carbon Energy, 2020. 3(1): p. 176-187. 110.Hong Bin Yang, J.M., 1 Sung-Fu Hung,2 Jiazang Chen,1 Hua Bing Tao,1 Xizu Wang,3 Liping Zhang,1, J.G. Rong Chen, 1 Hao Ming Chen,2 Liming Dai,4, B. Liu1, and *, Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. SCIENCE ADVANCES, 2016. 2(4). 111.RRUFF:https://rruff.info/chem=Co,O/display=default/R180022 . 112.RRUFF:https://rruff.info/chem=C/display=default/R050503 . 113.Bartůněk, V., Š. Huber, D. Sedmidubský, Z. Sofer, P. Šimek, and O. Jankovský, CoO and Co3O4 nanoparticles with a tunable particle size. Ceramics International, 2014. 40(8): p. 12591-12595. 114.Hadjiev, V.G., M.N. Iliev, and I.V. Vergilov, The Raman spectra of Co3O4. Journal of Physics C: Solid State Physics, 1988. 21(7): p. L199-L201. 115.Chen, P., K. Xu, Y. Tong, X. Li, S. Tao, Z. Fang, W. Chu, X. Wu, and C. Wu, Cobalt nitrides as a class of metallic electrocatalysts for the oxygen evolution reaction. Inorganic Chemistry Frontiers, 2016. 3(2): p. 236-242.
|