|
台灣行政院農委會,2010,臺灣柑橘產銷概況。 Abolaji, A. O., Babalola, O. V., Adegoke, A. K., &Farombi, E. O. (2017). Hesperidin, a citrus bioflavonoid, alleviates trichloroethylene-induced oxidative stress in Drosophila melanogaster. Environmental Toxicology and Pharmacology, 55, 202–207. https://doi.org/10.1016/J.ETAP.2017.08.038 Ahmad, A., &Viljoen, A. (2015). The in vitro antimicrobial activity of Cymbopogon essential oil (lemon grass) and its interaction with silver ions. Phytomedicine, 22(6), 657–665. https://doi.org/https://doi.org/10.1016/j.phymed.2015.04.002 Ahmad, S., &Beg, Z. H. (2013). Hypolipidemic and antioxidant activities of thymoquinone and limonene in atherogenic suspension fed rats. Food Chemistry, 138(2), 1116–1124. https://doi.org/https://doi.org/10.1016/j.foodchem.2012.11.109 Al-Kateb, H., &Mottram, D. S. (2014). The relationship between growth stages and aroma composition of lemon basil Ocimum citriodorum Vis. Food Chemistry, 152, 440–446. https://doi.org/https://doi.org/10.1016/j.foodchem.2013.12.001 Al-Qassabi, J. S. A., Weli, A. M., &Hossain, M. A. (2018). Comparison of total phenols content and antioxidant potential of peel extracts of local and imported lemons samples. Sustainable Chemistry and Pharmacy, 8, 71–75. https://doi.org/https://doi.org/10.1016/j.scp.2018.03.001 Alfonzo, A., Martorana, A., Guarrasi, V., Barbera, M., Gaglio, R., Santulli, A., Settanni, L., Galati, A., Moschetti, G., &Francesca, N. (2017). Effect of the lemon essential oils on the safety and sensory quality of salted sardines (Sardina pilchardus Walbaum 1792). Food Control, 73, 1265–1274. https://doi.org/10.1016/J.FOODCONT.2016.10.046 Almalki, M. A. (2020). Exopolysaccharide production by a new Lactobacillus lactis isolated from the fermented milk and its antioxidant properties. Journal of King Saud University - Science, 32(2), 1272–1277. https://doi.org/10.1016/J.JKSUS.2019.11.002 Alseekh, S., Perez de Souza, L., Benina, M., &Fernie, A. R. (2020). The style and substance of plant flavonoid decoration; towards defining both structure and function. Phytochemistry, 174, 112347. https://doi.org/https://doi.org/10.1016/j.phytochem.2020.112347 Ammad, F., Moumen, O., Gasem, A., Othmane, S., Hisashi, K.-N., Zebib, B., &Merah, O. (2018). The potency of lemon (Citrus limon L.) essential oil to control some fungal diseases of grapevine wood. Comptes Rendus Biologies, 341(2), 97–101. https://doi.org/https://doi.org/10.1016/j.crvi.2018.01.003 Andjelković, M., VanCamp, J., DeMeulenaer, B., Depaemelaere, G., Socaciu, C., Verloo, M., &Verhe, R. (2006). Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chemistry, 98(1), 23–31. https://doi.org/https://doi.org/10.1016/j.foodchem.2005.05.044 Antognoni, F., Mandrioli, R., Potente, G., Taneyo Saa, D. L., &Gianotti, A. (2019). Changes in carotenoids, phenolic acids and antioxidant capacity in bread wheat doughs fermented with different lactic acid bacteria strains. Food Chemistry, 292, 211–216. https://doi.org/https://doi.org/10.1016/j.foodchem.2019.04.061 Argyropoulos, D., &Müller, J. (2014). Changes of essential oil content and composition during convective drying of lemon balm (Melissa officinalis L.). Industrial Crops and Products, 52, 118–124. https://doi.org/https://doi.org/10.1016/j.indcrop.2013.10.020 Bacanlı, M. (2020). Chapter 27 - Limonene and ursolic acid in the treatment of diabetes: Citrus phenolic limonene, triterpenoid ursolic acid, antioxidants and diabetes (V. R. B. T.-D. (Second E.Preedy (ed.); pp. 275–283). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-815776-3.00027-9 Bacanlı, M., Anlar, H. G., Aydın, S., Çal, T., Arı, N., Ündeğer Bucurgat, Ü., Başaran, A. A., &Başaran, N. (2017). d-limonene ameliorates diabetes and its complications in streptozotocin-induced diabetic rats. Food and Chemical Toxicology, 110, 434–442. https://doi.org/https://doi.org/10.1016/j.fct.2017.09.020 Bacanlı, M., Başaran, A. A., &Başaran, N. (2015). The antioxidant and antigenotoxic properties of citrus phenolics limonene and naringin. Food and Chemical Toxicology, 81, 160–170. https://doi.org/https://doi.org/10.1016/j.fct.2015.04.015 Bancalari, E., Montanari, C., Levante, A., Alinovi, M., Neviani, E., Gardini, F., &Gatti, M. (2020). Lactobacillus paracasei 4341 as adjunct culture to enhance flavor in short ripened Caciotta-type cheese. Food Research International, 135, 109284. https://doi.org/https://doi.org/10.1016/j.foodres.2020.109284 Barreca, D., Bellocco, E., Caristi, C., Leuzzi, U., &Gattuso, G. (2011). Flavonoid profile and radical-scavenging activity of Mediterranean sweet lemon (Citrus limetta Risso) juice. Food Chemistry, 129(2), 417–422. https://doi.org/10.1016/J.FOODCHEM.2011.04.093 Baschieri, A., Ajvazi, M. D., Tonfack, J. L. F., Valgimigli, L., &Amorati, R. (2017). Explaining the antioxidant activity of some common non-phenolic components of essential oils. Food Chemistry, 232, 656–663. https://doi.org/https://doi.org/10.1016/j.foodchem.2017.04.036 Bharathy, H., &Fathima, N. N. (2017). Exploiting oleuropein for inhibiting collagen fibril formation. International Journal of Biological Macromolecules, 101, 179–186. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2017.03.050 Bhavaniramya, S., Vishnupriya, S., Al-Aboody, M. S., Vijayakumar, R., &Baskaran, D. (2019). Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain & Oil Science and Technology, 2(2), 49–55. https://doi.org/https://doi.org/10.1016/j.gaost.2019.03.001 Bier, M. C. J., Medeiros, A. B. P., DeKimpe, N., &Soccol, C. R. (2019). Evaluation of antioxidant activity of the fermented product from the biotransformation of R-(+)-limonene in solid-state fermentation of orange waste by Diaporthe sp. Biotechnology Research and Innovation, 3(1), 168–176. https://doi.org/https://doi.org/10.1016/j.biori.2019.01.002 Binello, A., Cravotto, G., Boffa, L., Stevanato, L., Bellumori, M., Innocenti, M., &Mulinacci, N. (2017). Efficient and selective green extraction of polyphenols from lemon balm. Comptes Rendus Chimie, 20(9–10), 921–926. https://doi.org/10.1016/J.CRCI.2017.06.003 Boneza, M. M., &Niemeyer, E. D. (2018). Cultivar affects the phenolic composition and antioxidant properties of commercially available lemon balm (Melissa officinalis L.) varieties. Industrial Crops and Products, 112, 783–789. https://doi.org/https://doi.org/10.1016/j.indcrop.2018.01.003 Buttke, T. M., &Sandstrom, P. A. (1994). Oxidative stress as a mediator of apoptosis. Immunology Today, 15(1), 7–10. https://doi.org/10.1016/0167-5699(94)90018-3 Chen, X., Zheng, R., Liu, R., &Li, L. (2020). Goat milk fermented by lactic acid bacteria modulates small intestinal microbiota and immune responses. Journal of Functional Foods, 65, 103744. https://doi.org/https://doi.org/10.1016/j.jff.2019.103744 Chinapongtitiwat, V., Jongaroontaprangsee, S., Chiewchan, N., &Devahastin, S. (2013). Important flavonoids and limonin in selected Thai citrus residues. Journal of Functional Foods, 5(3), 1151–1158. https://doi.org/https://doi.org/10.1016/j.jff.2013.03.012 Cho, J., &Park, E. (2020). Ferulic acid maintains the self-renewal capacity of embryo stem cells and adipose-derived mesenchymal stem cells in high fat diet-induced obese mice. The Journal of Nutritional Biochemistry, 77, 108327. https://doi.org/https://doi.org/10.1016/j.jnutbio.2019.108327 Cho, K. M., Lee, J. H., Yun, H. D., Ahn, B. Y., Kim, H., &Seo, W. T. (2011). Changes of phytochemical constituents (isoflavones, flavanols, and phenolic acids) during cheonggukjang soybeans fermentation using potential probiotics Bacillus subtilis CS90. Journal of Food Composition and Analysis, 24(3), 402–410. https://doi.org/https://doi.org/10.1016/j.jfca.2010.12.015 Cirlini, M., Ricci, A., Galaverna, G., &Lazzi, C. (2020). Application of lactic acid fermentation to elderberry juice: Changes in acidic and glucidic fractions. LWT, 118, 108779. https://doi.org/https://doi.org/10.1016/j.lwt.2019.108779 Dai, T., Yan, X., Li, Q., Li, T., Liu, C., McClements, D. J., &Chen, J. (2017). Characterization of binding interaction between rice glutelin and gallic acid: Multi-spectroscopic analyses and computational docking simulation. Food Research International, 102, 274–281. https://doi.org/https://doi.org/10.1016/j.foodres.2017.09.020 deAlmeida, A. A. C., deCarvalho, R. B. F., Silva, O. A., deSousa, D. P., &deFreitas, R. M. (2014). Potential antioxidant and anxiolytic effects of (+)-limonene epoxide in mice after marble-burying test. Pharmacology Biochemistry and Behavior, 118, 69–78. https://doi.org/https://doi.org/10.1016/j.pbb.2014.01.006 Dong, X., Hu, Y., Li, Y., &Zhou, Z. (2019). The maturity degree, phenolic compounds and antioxidant activity of Eureka lemon [Citrus limon (L.) Burm. f.]: A negative correlation between total phenolic content, antioxidant capacity and soluble solid content. Scientia Horticulturae, 243, 281–289. https://doi.org/https://doi.org/10.1016/j.scienta.2018.08.036 Falls, N., Singh, D., Anwar, F., Verma, A., &Kumar, V. (2018). Amelioration of neurodegeneration and cognitive impairment by Lemon oil in experimental model of Stressed mice. Biomedicine & Pharmacotherapy, 106, 575–583. https://doi.org/10.1016/J.BIOPHA.2018.06.160 Fan, X., Bai, J., Hu, M., Xu, Y., Zhao, S., Sun, Y., Wang, B., Hu, J., &Li, Y. (2020). Drug interaction study of flavonoids toward OATP1B1 and their 3D structure activity relationship analysis for predicting hepatoprotective effects. Toxicology, 437, 152445. https://doi.org/https://doi.org/10.1016/j.tox.2020.152445 Farag, H. A. M., Hosseinzadeh-Attar, M. J., Muhammad, B. A., Esmaillzadeh, A., &ElBilbeisi, A. H. (2019). Effects of vitamin C supplementation with and without endurance physical activity on components of metabolic syndrome: A randomized, double-blind, placebo-controlled clinical trial. Clinical Nutrition Experimental, 26, 23–33. https://doi.org/https://doi.org/10.1016/j.yclnex.2019.05.003 Feng, X., Hua, Y., Zhang, C., Kong, X., Li, X., &Chen, Y. (2020). Effect of soaking conditions on the formation of lipid derived free radicals in soymilk. Food Chemistry, 315, 126237. https://doi.org/https://doi.org/10.1016/j.foodchem.2020.126237 Fukuoka, N., Hirabayashi, H., &Hamada, T. (2020). Oxidative stress via the Maillard reaction is associated with the occurrence of internal browning in roots of sweetpotato (Ipomoea batatas). Plant Physiology and Biochemistry, 154, 21–29. https://doi.org/https://doi.org/10.1016/j.plaphy.2020.05.009 Gao, H., Wen, J.-J., Hu, J.-L., Nie, Q.-X., Chen, H.-H., Nie, S.-P., Xiong, T., &Xie, M.-Y. (2019). Momordica charantia juice with Lactobacillus plantarum fermentation: Chemical composition, antioxidant properties and aroma profile. Food Bioscience, 29, 62–72. https://doi.org/https://doi.org/10.1016/j.fbio.2019.03.007 García-Salas, P., Gómez-Caravaca, A. M., Arráez-Román, D., Segura-Carretero, A., Guerra-Hernández, E., García-Villanova, B., &Fernández-Gutiérrez, A. (2013). Influence of technological processes on phenolic compounds, organic acids, furanic derivatives, and antioxidant activity of whole-lemon powder. Food Chemistry, 141(2), 869–878. https://doi.org/10.1016/J.FOODCHEM.2013.02.124 Gómez-Mejía, E., Rosales-Conrado, N., León-González, M. E., &Madrid, Y. (2019). Citrus peels waste as a source of value-added compounds: Extraction and quantification of bioactive polyphenols. Food Chemistry, 295, 289–299. https://doi.org/https://doi.org/10.1016/j.foodchem.2019.05.136 González-Molina, E., Domínguez-Perles, R., Moreno, D. A., &García-Viguera, C. (2010). Natural bioactive compounds of Citrus limon for food and health. Journal of Pharmaceutical and Biomedical Analysis, 51(2), 327–345. https://doi.org/https://doi.org/10.1016/j.jpba.2009.07.027 Gorinstein, S., Martı́n-Belloso, O., Park, Y.-S., Haruenkit, R., Lojek, A., Ĉı́ž, M., Caspi, A., Libman, I., &Trakhtenberg, S. (2001). Comparison of some biochemical characteristics of different citrus fruits. Food Chemistry, 74(3), 309–315. https://doi.org/10.1016/S0308-8146(01)00157-1 Guimarães, R., Barros, L., Barreira, J. C. M., Sousa, M. J., Carvalho, A. M., &Ferreira, I. C. F. R. (2010). Targeting excessive free radicals with peels and juices of citrus fruits: Grapefruit, lemon, lime and orange. Food and Chemical Toxicology, 48(1), 99–106. https://doi.org/https://doi.org/10.1016/j.fct.2009.09.022 Hąc-Wydro, K., Flasiński, M., &Romańczuk, K. (2017). Essential oils as food eco-preservatives: Model system studies on the effect of temperature on limonene antibacterial activity. Food Chemistry, 235, 127–135. https://doi.org/https://doi.org/10.1016/j.foodchem.2017.05.051 Hardcastle, I., Rowlands, M., Moreno Barber, A., Grimshaw, R., Mohan, M., Nutley, B., &Jarman, M. (1999). Inhibition of protein prenylation by metabolites of limonene. Biochemical Pharmacology, 57(7), 801–809. https://doi.org/https://doi.org/10.1016/S0006-2952(98)00349-9 Hashemi, S. M. B., Mousavi Khaneghah, A., Barba, F. J., Nemati, Z., Sohrabi Shokofti, S., &Alizadeh, F. (2017). Fermented sweet lemon juice (Citrus limetta) using Lactobacillus plantarum LS5: Chemical composition, antioxidant and antibacterial activities. Journal of Functional Foods, 38, 409–414. https://doi.org/10.1016/J.JFF.2017.09.040 Himed, L., Merniz, S., Monteagudo-Olivan, R., Barkat, M., &Coronas, J. (2019). Antioxidant activity of the essential oil of citrus limon before and after its encapsulation in amorphous SiO2. Scientific African, 6, e00181. https://doi.org/https://doi.org/10.1016/j.sciaf.2019.e00181 Hu, X.-P., Yin, F.-W., Zhou, D.-Y., Xie, H.-K., Zhu, B.-W., Ma, X.-C., Tian, X.-G., Wang, C., &Shahidi, F. (2019). Stability of resveratrol esters with caprylic acid during simulated in vitro gastrointestinal digestion. Food Chemistry, 276, 675–679. https://doi.org/10.1016/J.FOODCHEM.2018.10.062 Jeż, M., Wiczkowski, W., Zielińska, D., Białobrzewski, I., &Błaszczak, W. (2018). The impact of high pressure processing on the phenolic profile, hydrophilic antioxidant and reducing capacity of purée obtained from commercial tomato varieties. Food Chemistry, 261, 201–209. https://doi.org/https://doi.org/10.1016/j.foodchem.2018.04.060 Johnson, G. J., Holloway, D. E., Hutton, S. W., &Duane, W. C. (1981). Platelet function in scurvy and experimental human vitamin C deficiency. Thrombosis Research, 24(1), 85–93. https://doi.org/https://doi.org/10.1016/0049-3848(81)90034-7 Junior, M. R. M., Silva, T. A. A. R. e, Franchi, G. C., Nowill, A., Pastore, G. M., &Hyslop, S. (2009). Antioxidant potential of aroma compounds obtained by limonene biotransformation of orange essential oil. Food Chemistry, 116(1), 8–12. https://doi.org/https://doi.org/10.1016/j.foodchem.2009.01.084 Justino de Araújo, A. C., Freitas, P. R., Rodrigues dos Santos Barbosa, C., Muniz, D. F., Rocha, J. E., Albuquerque da Silva, A. C., Datiane de Morais Oliveira-Tintino, C., Ribeiro-Filho, J., Everson da Silva, L., Confortin, C., Amaral, W.do, Deschamps, C., Barbosa-Filho, J. M., Ramos de Lima, N. T., Tintino, S. R., &Melo Coutinho, H. D. (2020). GC-MS-FID characterization and antibacterial activity of the Mikania cordifolia essential oil and limonene against MDR strains. Food and Chemical Toxicology, 136, 111023. https://doi.org/https://doi.org/10.1016/j.fct.2019.111023 Kachouri, F., &Hamdi, M. (2006). Use Lactobacillus plantarum in olive oil process and improvement of phenolic compounds content. Journal of Food Engineering, 77(3), 746–752. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2005.05.061 Kandi, S., &Charles, A. L. (2019). Statistical comparative study between the conventional DPPH spectrophotometric and dropping DPPH analytical method without spectrophotometer: Evaluation for the advancement of antioxidant activity analysis. Food Chemistry, 287, 338–345. https://doi.org/https://doi.org/10.1016/j.foodchem.2019.02.110 Kfoury, M., Geagea, C., Ruellan, S., Greige-Gerges, H., &Fourmentin, S. (2019). Effect of cyclodextrin and cosolvent on the solubility and antioxidant activity of caffeic acid. Food Chemistry, 278, 163–169. https://doi.org/https://doi.org/10.1016/j.foodchem.2018.11.055 Kim, H.-B., Lee, S., Hwang, E.-S., Maeng, S., &Park, J.-H. (2017). p-Coumaric acid enhances long-term potentiation and recovers scopolamine-induced learning and memory impairments. Biochemical and Biophysical Research Communications, 492(3), 493–499. https://doi.org/https://doi.org/10.1016/j.bbrc.2017.08.068 Kocadağlı, T., &Gökmen, V. (2019). Caramelization in Foods: A Food Quality and Safety Perspective (L.Melton, F.Shahidi, &P. B. T.-E. of F. C.Varelis (eds.); pp. 18–29). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-08-100596-5.21630-2 Kycia, K., Chlebowska-Śmigiel, A., Szydłowska, A., Sokół, E., Ziarno, M., &Gniewosz, M. (2020). Pullulan as a potential enhancer of Lactobacillus and Bifidobacterium viability in synbiotic low fat yoghurt and its sensory quality. LWT, 128, 109414. https://doi.org/https://doi.org/10.1016/j.lwt.2020.109414 Lan, W., Wang, S., Chen, M., Sameen, D. E., Lee, K., &Liu, Y. (2020). Developing poly(vinyl alcohol)/chitosan films incorporate with d-limonene: Study of structural, antibacterial, and fruit preservation properties. International Journal of Biological Macromolecules, 145, 722–732. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2019.12.230 Laughton, M. J., Evans, P. J., Moroney, M. A., Hoult, J. R. S., &Halliwell, B. (1991). Inhibition of mammalian 5-lipoxygenase and cyclo-oxygenase by flavonoids and phenolic dietary additives: Relationship to antioxidant activity and to iron ion-reducing ability. Biochemical Pharmacology, 42(9), 1673–1681. https://doi.org/https://doi.org/10.1016/0006-2952(91)90501-U Lee, B.-H., Lo, Y.-H., &Pan, T.-M. (2013). Anti-obesity activity of Lactobacillus fermented soy milk products. Journal of Functional Foods, 5(2), 905–913. https://doi.org/https://doi.org/10.1016/j.jff.2013.01.040 Leopoldini, M., Russo, N., &Toscano, M. (2011). The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chemistry, 125(2), 288–306. https://doi.org/https://doi.org/10.1016/j.foodchem.2010.08.012 Li, F., Cao, J., Liu, Q., Hu, X., Liao, X., &Zhang, Y. (2020). Acceleration of the Maillard reaction and achievement of product quality by high pressure pretreatment during black garlic processing. Food Chemistry, 318, 126517. https://doi.org/https://doi.org/10.1016/j.foodchem.2020.126517 Li, S., Jin, Z., Hu, D., Yang, W., Yan, Y., Nie, X., Lin, J., Zhang, Q., Gai, D., Ji, Y., &Chen, X. (2020). Effect of solid-state fermentation with Lactobacillus casei on the nutritional value, isoflavones, phenolic acids and antioxidant activity of whole soybean flour. LWT, 125, 109264. https://doi.org/https://doi.org/10.1016/j.lwt.2020.109264 Li, T., Li, X., Dai, T., Hu, P., Niu, X., Liu, C., &Chen, J. (2020). Binding mechanism and antioxidant capacity of selected phenolic acid - β-casein complexes. Food Research International, 129, 108802. https://doi.org/https://doi.org/10.1016/j.foodres.2019.108802 Li, X., Peng, Y., Liu, H., Xu, Y., Wang, X., Zhang, C., &Ma, X. (2020). Comparative studies on the interaction of nine flavonoids with trypsin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 118440. https://doi.org/https://doi.org/10.1016/j.saa.2020.118440 Li, Y., Ning, J., Wang, Y., Wang, C., Sun, C., Huo, X., Yu, Z., Feng, L., Zhang, B., Tian, X., &Ma, X. (2018). Drug interaction study of flavonoids toward CYP3A4 and their quantitative structure activity relationship (QSAR) analysis for predicting potential effects. Toxicology Letters, 294, 27–36. https://doi.org/https://doi.org/10.1016/j.toxlet.2018.05.008 Limbo, S., &Piergiovanni, L. (2006). Shelf life of minimally processed potatoes: Part 1. Effects of high oxygen partial pressures in combination with ascorbic and citric acids on enzymatic browning. Postharvest Biology and Technology, 39(3), 254–264. https://doi.org/https://doi.org/10.1016/j.postharvbio.2005.10.016 Lin, X., Xia, Y., Yang, Y., Wang, G., Zhou, W., &Ai, L. (2020). Probiotic characteristics of Lactobacillus plantarum AR113 and its molecular mechanism of antioxidant. LWT, 126, 109278. https://doi.org/https://doi.org/10.1016/j.lwt.2020.109278 Liu, J., Huang, H., Huang, Z., Ma, Y., Zhang, L., He, Y., Li, D., Liu, W., Goodin, S., Zhang, K., &Zheng, X. (2019). Eriocitrin in combination with resveratrol ameliorates LPS-induced inflammation in RAW264.7 cells and relieves TPA-induced mouse ear edema. Journal of Functional Foods, 56, 321–332. https://doi.org/https://doi.org/10.1016/j.jff.2019.03.008 Liu, L., Qu, X., Xia, Q., Wang, H., Chen, P., Li, X., Wang, L., &Yang, W. (2018). Effect of Lactobacillus rhamnosus on the antioxidant activity of Cheddar cheese during ripening and under simulated gastrointestinal digestion. LWT, 95, 99–106. https://doi.org/10.1016/J.LWT.2018.04.053 Liu, Q., Pan, R., Ding, L., Zhang, F., Hu, L., Ding, B., Zhu, L., Xia, Y., &Dou, X. (2017). Rutin exhibits hepatoprotective effects in a mouse model of non-alcoholic fatty liver disease by reducing hepatic lipid levels and mitigating lipid-induced oxidative injuries. International Immunopharmacology, 49, 132–141. https://doi.org/https://doi.org/10.1016/j.intimp.2017.05.026 Liu, Y.-S., Chang, Y.-C., &Chen, H.-H. (2018). Silver nanoparticle biosynthesis by using phenolic acids in rice husk extract as reducing agents and dispersants. Journal of Food and Drug Analysis, 26(2), 649–656. https://doi.org/https://doi.org/10.1016/j.jfda.2017.07.005 Loh, Y. C., Chan, S. Y., Tew, W. Y., Oo, C. W., &Yam, M. F. (2020). New flavonoid-based compound synthesis strategy for antihypertensive drug development. Life Sciences, 249, 117512. https://doi.org/https://doi.org/10.1016/j.lfs.2020.117512 Lorente, J., Vegara, S., Martí, N., Ibarz, A., Coll, L., Hernández, J., Valero, M., &Saura, D. (2014). Chemical guide parameters for Spanish lemon (Citrus limon (L.) Burm.) juices. Food Chemistry, 162, 186–191. https://doi.org/10.1016/J.FOODCHEM.2014.04.042 Lubinska-Szczygieł, M., Różańska, A., Namieśnik, J., Dymerski, T., Shafreen, R. B., Weisz, M., Ezra, A., &Gorinstein, S. (2018). Quality of limes juices based on the aroma and antioxidant properties. Food Control, 89, 270–279. https://doi.org/10.1016/J.FOODCONT.2018.02.005 Ma, L., Chen, J., Han, H., Liu, P., Wang, H., Lin, S., Zhang, Q., Lu, D., &Zhang, X. (2020). Effects of lemon essential oil and limonene on the progress of early caries: An in vitro study. Archives of Oral Biology, 111, 104638. https://doi.org/https://doi.org/10.1016/j.archoralbio.2019.104638 Mahmoud, S. S., Williams, M., &Croteau, R. (2004). Cosuppression of limonene-3-hydroxylase in peppermint promotes accumulation of limonene in the essential oil. Phytochemistry, 65(5), 547–554. https://doi.org/https://doi.org/10.1016/j.phytochem.2004.01.005 Maleki, S. J., Crespo, J. F., &Cabanillas, B. (2019). Anti-inflammatory effects of flavonoids. Food Chemistry, 299, 125124. https://doi.org/https://doi.org/10.1016/j.foodchem.2019.125124 Martorana, A., Alfonzo, A., Settanni, L., Corona, O., LaCroce, F., Caruso, T., Moschetti, G., &Francesca, N. (2015). An innovative method to produce green table olives based on “pied de cuve” technology. Food Microbiology, 50, 126–140. https://doi.org/https://doi.org/10.1016/j.fm.2015.03.008 Matsumoto, M., Tarumi, T., Sugimoto, K., Kagayama, N., Funahashi, S., &Takagi, H. D. (1997). Oxidation reaction of l-ascorbic acid by dicyanobis(1,10-phenanthroline)iron(III) in dimethyl sulfoxide at elevated pressures: evidence for adiabatic electron transfer. Inorganica Chimica Acta, 255(1), 81–85. https://doi.org/https://doi.org/10.1016/S0020-1693(96)05342-X Mazzei, P., Francesca, N., Moschetti, G., &Piccolo, A. (2010). NMR spectroscopy evaluation of direct relationship between soils and molecular composition of red wines from Aglianico grapes. Analytica Chimica Acta, 673(2), 167–172. https://doi.org/https://doi.org/10.1016/j.aca.2010.06.003 Miner, K., &Bauer, W. (2016). Consumer Acceptability of Lemon Essential Oil as a Lemon Juice Substitute or Flavor Enhancer: A Pilot Study. Journal of the Academy of Nutrition and Dietetics, 116(9, Supplement), A46. https://doi.org/https://doi.org/10.1016/j.jand.2016.06.151 Mishra, M., Panta, R., &Miyares, M. (2016). Influence of coffee and its components on breast cancer: A review. Asian Pacific Journal of Tropical Disease, 6(10), 827–831. https://doi.org/https://doi.org/10.1016/S2222-1808(16)61140-4 Moraes, T. M., Kushima, H., Moleiro, F. C., Santos, R. C., Machado Rocha, L. R., Marques, M. O., Vilegas, W., &Hiruma-Lima, C. A. (2009). Effects of limonene and essential oil from Citrus aurantium on gastric mucosa: Role of prostaglandins and gastric mucus secretion. Chemico-Biological Interactions, 180(3), 499–505. https://doi.org/https://doi.org/10.1016/j.cbi.2009.04.006 Mugampoza, D., Gkatzionis, K., Linforth, R. S. T., &Dodd, C. E. R. (2019). Acid production, growth kinetics and aroma profiles of Lactobacillus flora from Stilton cheese. Food Chemistry, 287, 222–231. https://doi.org/https://doi.org/10.1016/j.foodchem.2019.02.082 Park, E. (2016). Data on cell cycle in breast cancer cell line, MDA-MB-231 with ferulic acid treatment. Data in Brief, 7, 107–110. https://doi.org/https://doi.org/10.1016/j.dib.2016.02.001 Pirker, K. F., Goodman, B. A., Pascual, E. C., Kiefer, S., Soja, G., &Reichenauer, T. G. (2002). Free radicals in the fruit of three strawberry cultivars exposed to drought stress in the field. Plant Physiology and Biochemistry, 40(6), 709–717. https://doi.org/https://doi.org/10.1016/S0981-9428(02)01412-2 Pisoschi, A. M., &Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry, 97, 55–74. https://doi.org/10.1016/J.EJMECH.2015.04.040 Praveen Kumar, M., Poornima, Mamidala, E., Al-Ghanim, K., Al-Misned, F., Ahmed, Z., &Mahboob, S. (2020). Effects of D-Limonene on aldose reductase and protein glycation in diabetic rats. Journal of King Saud University - Science, 32(3), 1953–1958. https://doi.org/https://doi.org/10.1016/j.jksus.2020.01.043 Ran, L., Chi, Y., Huang, Y., He, Q., &Ren, Y. (2020). Synergistic antioxidant effect of glutathione and edible phenolic acids and improvement of the activity protection by coencapsulation into chitosan-coated liposomes. LWT, 127, 109409. https://doi.org/https://doi.org/10.1016/j.lwt.2020.109409 Rasheeda, K., Bharathy, H., &Nishad Fathima, N. (2018). Vanillic acid and syringic acid: Exceptionally robust aromatic moieties for inhibiting in vitro self-assembly of type I collagen. International Journal of Biological Macromolecules, 113, 952–960. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2018.03.015 Raspo, M. A., Vignola, M. B., Andreatta, A. E., &Juliani, H. R. (2020). Antioxidant and antimicrobial activity of citrus essential oils from Argentina and the United States. Food Bioscience, 100651. https://doi.org/https://doi.org/10.1016/j.fbio.2020.100651 Reddy, G., Altaf, M., Naveena, B. J., Venkateshwar, M., &Kumar, E. V. (2008). Amylolytic bacterial lactic acid fermentation — A review. Biotechnology Advances, 26(1), 22–34. https://doi.org/https://doi.org/10.1016/j.biotechadv.2007.07.004 Redruello, B., Szwengiel, A., Ladero, V., Rio, B.del, &Alvarez, M. A. (2020). Identification of technological/metabolic/environmental profiles of cheeses with high GABA contents. LWT, 109603. https://doi.org/https://doi.org/10.1016/j.lwt.2020.109603 Rice-Evans, C. A., Miller, N. J., &Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20(7), 933–956. https://doi.org/https://doi.org/10.1016/0891-5849(95)02227-9 Rozza, A. L., Moraes, T. de M., Kushima, H., Tanimoto, A., Marques, M. O. M., Bauab, T. M., Hiruma-Lima, C. A., &Pellizzon, C. H. (2011). Gastroprotective mechanisms of Citrus lemon (Rutaceae) essential oil and its majority compounds limonene and β-pinene: Involvement of heat-shock protein-70, vasoactive intestinal peptide, glutathione, sulfhydryl compounds, nitric oxide and prostaglandin E. Chemico-Biological Interactions, 189(1), 82–89. https://doi.org/https://doi.org/10.1016/j.cbi.2010.09.031 Russo, M., Bonaccorsi, I., Torre, G., Sarò, M., Dugo, P., &Mondello, L. (2014). Underestimated sources of flavonoids, limonoids and dietary fibre: Availability in lemon’s by-products. Journal of Functional Foods, 9, 18–26. https://doi.org/https://doi.org/10.1016/j.jff.2014.04.004 Saito, K., Yonekura-Sakakibara, K., Nakabayashi, R., Higashi, Y., Yamazaki, M., Tohge, T., &Fernie, A. R. (2013). The flavonoid biosynthetic pathway in Arabidopsis: Structural and genetic diversity. Plant Physiology and Biochemistry, 72, 21–34. https://doi.org/https://doi.org/10.1016/j.plaphy.2013.02.001 Saleem, M., &Saeed, M. T. (2020). Potential application of waste fruit peels (orange, yellow lemon and banana) as wide range natural antimicrobial agent. Journal of King Saud University - Science, 32(1), 805–810. https://doi.org/https://doi.org/10.1016/j.jksus.2019.02.013 Sarma, A. D., Sreelakshmi, Y., &Sharma, R. (1997). Antioxidant ability of anthocyanins against ascorbic acid oxidation. Phytochemistry, 45(4), 671–674. https://doi.org/https://doi.org/10.1016/S0031-9422(97)00057-5 Schianoli Frateschi, C., Durigan, J. F., Omir Marques, M., T.D. Hojo, E., O. Santos, L., Cunha Júnior, L. C., &deAlmeida Teixeira, G. H. (2013). Storage of sugarcane stalks (Saccharum officinarum cv. SP 79-1011) in low oxygen atmospheres and the effects on enzymatic browning. Postharvest Biology and Technology, 86, 154–158. https://doi.org/https://doi.org/10.1016/j.postharvbio.2013.06.032 Shao, P., Zhang, H., Niu, B., &Jiang, L. (2018). Antibacterial activities of R-(+)-Limonene emulsion stabilized by Ulva fasciata polysaccharide for fruit preservation. International Journal of Biological Macromolecules, 111, 1273–1280. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2018.01.126 Sharaf-Eldin, M., &Geösel, A. (2016). Efficacy of hydrogen peroxide on postharvest quality of white button mushroom. 42, 1–17. Shim, S.-Y., Kim, J.-H., Kho, K.-H., &Lee, M. (2020). Anti-inflammatory and anti-oxidative activities of lemon myrtle (Backhousia citriodora) leaf extract. Toxicology Reports, 7, 277–281. https://doi.org/https://doi.org/10.1016/j.toxrep.2020.01.018 Sikora, M., &Świeca, M. (2018). Effect of ascorbic acid postharvest treatment on enzymatic browning, phenolics and antioxidant capacity of stored mung bean sprouts. Food Chemistry, 239, 1160–1166. https://doi.org/https://doi.org/10.1016/j.foodchem.2017.07.067 Singh, B., Singh, J. P., Kaur, A., &Singh, N. (2020). Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Research International, 132, 109114. https://doi.org/https://doi.org/10.1016/j.foodres.2020.109114 Son, S.-H., Yang, S.-J., Jeon, H.-L., Yu, H.-S., Lee, N.-K., Park, Y.-S., &Paik, H.-D. (2018). Antioxidant and immunostimulatory effect of potential probiotic Lactobacillus paraplantarum SC61 isolated from Korean traditional fermented food, jangajji. Microbial Pathogenesis, 125, 486–492. https://doi.org/https://doi.org/10.1016/j.micpath.2018.10.018 Song, M. W., Chung, Y., Kim, K.-T., Hong, W. S., Chang, H. J., &Paik, H.-D. (2020). Probiotic characteristics of Lactobacillus brevis B13-2 isolated from kimchi and investigation of antioxidant and immune-modulating abilities of its heat-killed cells. LWT, 109452. https://doi.org/10.1016/J.LWT.2020.109452 Sridharan, B., Mehra, Y., Ganesh, R. N., &Viswanathan, P. (2016). Regulation of urinary crystal inhibiting proteins and inflammatory genes by lemon peel extract and formulated citrus bioflavonoids on ethylene glycol induced urolithic rats. Food and Chemical Toxicology, 94, 75–84. https://doi.org/https://doi.org/10.1016/j.fct.2016.05.013 Suh, K. S., Chon, S., &Choi, E. M. (2017). Limonene protects osteoblasts against methylglyoxal-derived adduct formation by regulating glyoxalase, oxidative stress, and mitochondrial function. Chemico-Biological Interactions, 278, 15–21. https://doi.org/https://doi.org/10.1016/j.cbi.2017.10.001 Szekalska, M., Sosnowska, K., Tomczykowa, M., Winnicka, K., Kasacka, I., &Tomczyk, M. (2020). In vivo anti-inflammatory and anti-allergic activities of cynaroside evaluated by using hydrogel formulations. Biomedicine & Pharmacotherapy, 121, 109681. https://doi.org/https://doi.org/10.1016/j.biopha.2019.109681 Tan, Z., Cheng, J., Liu, Q., Zhou, L., Kenny, J., Wang, T., Lin, X., Yuan, J., Quinn, J. M. W., Tickner, J., Hong, G., Qin, A., Zhao, J., &Xu, J. (2017). Neohesperidin suppresses osteoclast differentiation, bone resorption and ovariectomised-induced osteoporosis in mice. Molecular and Cellular Endocrinology, 439, 369–378. https://doi.org/https://doi.org/10.1016/j.mce.2016.09.026 Tao, N., Chen, Y., Wu, Y., Wang, X., Li, L., &Zhu, A. (2019). The terpene limonene induced the green mold of citrus fruit through regulation of reactive oxygen species (ROS) homeostasis in Penicillium digitatum spores. Food Chemistry, 277, 414–422. https://doi.org/https://doi.org/10.1016/j.foodchem.2018.10.142 Ternelli, M., Brighenti, V., Anceschi, L., Poto, M., Bertelli, D., Licata, M., &Pellati, F. (2020). Innovative methods for the preparation of medical Cannabis oils with a high content of both cannabinoids and terpenes. Journal of Pharmaceutical and Biomedical Analysis, 186, 113296. https://doi.org/https://doi.org/10.1016/j.jpba.2020.113296 Tridge. (2016). Top Producing Countries of Lemon. Vandercook, C. E., &Tisserat, B. (1989). Flavonoid changes in developing lemons grown in vivo and in vitro. Phytochemistry, 28(3), 799–803. https://doi.org/https://doi.org/10.1016/0031-9422(89)80118-9 Vollmuth, T. A. (2018). Caramel color safety – An update. Food and Chemical Toxicology, 111, 578–596. https://doi.org/https://doi.org/10.1016/j.fct.2017.12.004 Wang, C.-Y., Chen, Y.-W., &Hou, C.-Y. (2019). Antioxidant and antibacterial activity of seven predominant terpenoids. International Journal of Food Properties, 22(1), 230–238. https://doi.org/10.1080/10942912.2019.1582541 Wang, L.-C., Pan, T.-M., &Tsai, T.-Y. (2018). Lactic acid bacteria-fermented product of green tea and Houttuynia cordata leaves exerts anti-adipogenic and anti-obesity effects. Journal of Food and Drug Analysis, 26(3), 973–984. https://doi.org/https://doi.org/10.1016/j.jfda.2017.11.009 Wang, M., Lei, M., Samina, N., Chen, L., Liu, C., Yin, T., Yan, X., Wu, C., He, H., &Yi, C. (2020). Impact of Lactobacillus plantarum 423 fermentation on the antioxidant activity and flavor properties of rice bran and wheat bran. Food Chemistry, 127156. https://doi.org/https://doi.org/10.1016/j.foodchem.2020.127156 Wang, Y., Wang, S., Fabroni, S., Feng, S., Rapisarda, P., &Rouseff, R. (2020). Chapter 22 - Chemistry of citrus flavor (M.Talon, M.Caruso, &F. G. B. T.-T. G. C.Gmitter (eds.); pp. 447–470). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-812163-4.00022-X Wilson, N. (2014). Chapter 8 - Contamination: bacteria and wild yeasts in a whisky fermentation (I.Russell &G. B. T.-W. (Second E.Stewart (eds.); pp. 147–154). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-401735-1.00008-8 Wu, C., Li, T., Qi, J., Jiang, T., Xu, H., &Lei, H. (2020). Effects of lactic acid fermentation-based biotransformation on phenolic profiles, antioxidant capacity and flavor volatiles of apple juice. LWT, 122, 109064. https://doi.org/https://doi.org/10.1016/j.lwt.2020.109064 Yazgan, H., Ozogul, Y., &Kuley, E. (2019). Antimicrobial influence of nanoemulsified lemon essential oil and pure lemon essential oil on food-borne pathogens and fish spoilage bacteria. International Journal of Food Microbiology, 306, 108266. https://doi.org/10.1016/J.IJFOODMICRO.2019.108266 Yin, Q., Han, X., Han, Z., Chen, Q., Shi, Y., Gao, H., Zhang, T., Dong, G., Xiong, C., Song, C., Sun, W., &Chen, S. (2020). Genome-wide analyses reveals a glucosyltransferase involved in rutin and emodin glucoside biosynthesis in tartary buckwheat. Food Chemistry, 318, 126478. https://doi.org/https://doi.org/10.1016/j.foodchem.2020.126478 Yoon, K. Y., Woodams, E. E., &Hang, Y. D. (2005). Fermentation of beet juice by beneficial lactic acid bacteria. LWT - Food Science and Technology, 38(1), 73–75. https://doi.org/https://doi.org/10.1016/j.lwt.2004.04.008 Zaidun, N. H., Thent, Z. C., &Latiff, A. A. (2018). Combating oxidative stress disorders with citrus flavonoid: Naringenin. Life Sciences, 208, 111–122. https://doi.org/10.1016/J.LFS.2018.07.017 Zhang, S. S., Xu, Z. S., Qin, L. H., &Kong, J. (2020). Low-sugar yogurt making by the co-cultivation of Lactobacillus plantarum WCFS1 with yogurt starter cultures. Journal of Dairy Science, 103(4), 3045–3054. https://doi.org/https://doi.org/10.3168/jds.2019-17347 Zhu, X., Ouyang, W., Lan, Y., Xiao, H., Tang, L., Liu, G., Feng, K., Zhang, L., Song, M., &Cao, Y. (2020). Anti-hyperglycemic and liver protective effects of flavonoids from Psidium guajava L. (guava) leaf in diabetic mice. Food Bioscience, 35, 100574. https://doi.org/https://doi.org/10.1016/j.fbio.2020.100574 Zhu, Z., Fang, R., Huang, M., Wei, Y., &Zhou, G. (2020). Oxidation combined with Maillard reaction induced free and protein-bound Nε-carboxymethyllysine and Nε-carboxyethyllysine formation during braised chicken processing. Food Science and Human Wellness. https://doi.org/https://doi.org/10.1016/j.fshw.2020.05.013 Żyżyńska-Granica, B., Gierlikowska, B., Parzonko, A., Kiss, A. K., &Granica, S. (2020). The bioactivity of flavonoid glucuronides and free aglycones in the context of their absorption, II phase metabolism and deconjugation at the inflammation site. Food and Chemical Toxicology, 135, 110929. https://doi.org/https://doi.org/10.1016/j.fct.2019.110929
|