[1] 陳瑞和,感測器,”全華圖書, Jan. 1993
[2] A. Bakker, et al., “High accuracy CMOS smart temperature sensors,” Kluwer Academic Publishers, 2000.
[3] G. C. M. Meijer, et al., “Temperature sensor and voltage reference implemented in CMOS technology,” IEEE Sensors J. , vol.1, no. 3, pp. 225-235, Oct. 2001.
[4] C. Poirier, et al., “Power and Temperature control on a 90nm Itanium Family Processor” IEEE JSSC, vol. 4 1, no. 1, pp. 229-237 Jan. 2006.
[5] M. Sasaki, et al., “A Temperature Sensor With an Inaccuracy of 1/+0.8°C Using 90 nm 1 V CMOS for Online Thermal Monitoring of VLSI Circuits,” IEEE Transaction on Semiconductor Manufacturing , vol. 21, no. 2, May.
[6] J. Y in, et al., “A System on Chip EPC Gen 2 Passive UHF RFID Tag with Embedded Temperature Sensor,” IEEE ISSCC Dig. Dig., pp. 308-309, Feb. 2010.
[7] J. Chapman, et al., “A low-cost high-performance CMOS timing vernier for ATE,” proc. IEEE ITC, 1995, pp. 459‒468.
[8] Databeans, “2010 Temperature Sensors,” http://www.databeans.com
[9] C. S. Taillefer, et al., “Delta–Sigma A/D conversion via time-mode signal processing,” IEEE Trans. Circuits Syst. I, vol. 56, no. 9, pp. 1908–1920, Sep. 2009.
[10] Gordon W. et al., “A Brief Introduction to Time-to-Digital and Digital-to-Time Converters,” IEEE Trans. Circuits Syst. II, vol. 57, no. 3, pp. 153–157, Mar. 2010.
[11] T. Okayasu, et al., “1.83 ps-Resolution CMOS dynamic arbitrary timing generator for ATE applications,” IEEE ISSCC, 2006, pp. 2122–2131.
[12] Y.-H. Kao et al., “A Direct-Sampling Pulsed Time-of-Flight Radar With Frequency-Defined Vernier Digital-to-Time Converter in 65 nm CMOS,” IEEE JSSC, vol. 50, no. 11, pp. 2665–2677, Nov. 2015.
[13] M . A. Pertijs et al., “A High Accuracy Temperature Sensor with Second Order Curvature Correction and Digital Bus Interface,” IEEE ISCAS , pp. 368-371, May. 2001.
95
[14] K. Souri, et al., “A 0.12 mm 2 7.4 W Micropower Temperature Sensor With an Inaccuracy of 0.2 °C (3σ) From 30 °C to 125 °C IEEE JSSC , vol. 46, no. 7, pp. 1693-1700. July 2011.
[15] K. So uri, et al., “A CMOS Temperature Sensor With a Voltage Calibrated Inaccuracy of 0.15 °C (3σ) From 55 °C to 125 °C ,” IEEE JSSC , vol. 48, no. pp. 292-301, Jan. 2013.
[16] A L. Aita, et al., “Low Power CMOS Smart Temperature Sensor With a Batch Calibrated Inaccuracy of ±0.25 °C (±3σ) from 70 °C to 130 °C,” IEEE Sensors J. , vol. 13,no. 5, pp. 1840-1848, May. 2013.
[17] J. An, K. Ryu, et al., “An Energy Efficient Time Domain Temperature Sensor for Low Power On Chip Thermal Management,” IEEE Sensors J. , vol. 14, no. 1, pp. 104-110, Jan. 2014.
[18] K. Souri, et al., “A 0.85V 600nW All CMOS Temperature Sensor with an Inaccuracy of ±0.4°C (3σ) from 40 to 125°C,” IEEE I SSCC , Feb.2014
[19] A. Heidary, et al., “A BJT Based CMOS Temperature Sensor with a 3.6pJ·K 2 Resolution FoM,” IEEE I SSCC , Feb.
[20] A. BAKKER, “CMOS Smart Temperature Sensors An Overview,” Proc. IEEE Sensors, vol. 2, pp. 1423 1427, Jun. 2002.
[21] K. E. Kuijk, “A precision reference voltage source,” IEEE JSSC, vol. 8, no. 3, pp. 222-226, Jun. 1973.
[22] A. Bakker, et al., “Micropower CMOS temperature sensor with digital output,” IEEE JSSC, vol. 31, no. 7, pp. 933-937, Jul. 1996.
[23] C. Weng, et al., “A Temperature sensor in 0.6μm CMOS Technology,” IEEE Asia Pacific CNF, pp. 116-119, Aug. 1999.
[24] K. Souri, et al., “A 0.85V 600nW All CMOS Temperature Sensor with an Inaccuracy of ±0.4°C (3σ) from 40 to 125°C,” IEEE International Solid State Circuits Conference, Feb. 2014.
[25] Heidary, et al., “A BJT Based CMOS Temperature Sensor with a 3.6pJ·K2 Resolution FoM,” IEEE ISSCC, Feb. 2014.
[26] G. Wang, et al., “The Temperature Characteristics of Bipolar Transistors Fabricated in CMOS Technology,” Sens. Actuat., vol. 87, pp. 81-89, 2000.
[27] P. Chen, et al., “A Time to Digital Converter Based CMOS Smart Temperature
96
Sensor,” IEEE JSSC, vol. 40, no. 8, pp. 1642-1648, Aug. 2005.
[28] Nguyen Thanh Trung, et al., “A Delay Line with Highly Linear Thermal Sensitivity for Smart Temperature Sensor,” in Proc. 50th MWSCAS, pp. 899-902, Aug. 2007.
[29] P. Chen, et al., “A Fully Digital Time Domain Smart Temperature Sensor Realized with 140 FPGA Logic Elements”, IEEE Transactions on Circuits And Systems I, vol. 54, pp. 2661-2668, Dec. 2007.
[30] M. K. Law, et al., “A Time Domain Differential CMOS Temperature Sensor with Reduced Supply Sensitivity,” IEEE International Symposium on Circuits and Systems, pp. 2126-2129, May. 2008.
[31] C. K. Kim, et al., “CMOS Temperature Sensor with Ring Oscillator for Mobile DRAM Self refresh Control,” IEEE International Symposium on Circuits and Systems, pp. 3094-3097, May. 2008.
[32] C.-C.Chen et al., “All Digital Pulse Shrinking Time to Digital Converter with Improved Dynamic Range,” American Institute of Physics, Review of Scientific Instruments, vol. 87, no. 4, pp. 046104(1 3), Apr. 2016.
[33] C.-C.Chen, et al., A Linearization Time-Domain CMOS Smart Temperature Sensor Using a Curvature Compensation Oscillator. Sensors 2013, 13, 11439–11452.
[34] C.-C.Chen, et al., "An Area-Efficient CMOS Time-to-Digital Converter Based on a Pulse-Shrinking Scheme," in IEEE TCAS II: Express Briefs, vol. 61, no. 3, pp. 163-167, March 2014.
[35] T. A. Demassa, and Z. Ciccone,” Digital Integrated Circuits,” John Wiley & Sons, Inc., 1996.
[36] 郭宗億,2016,具偏移消除之全數位CMOS時域智慧型溫度感測器之設計與實作,國立高雄第一科技大學,碩士論文。[37] P. Chen, et al., “A CMOS pulse-shrinking delay element for time interval measurement,” IEEE TCAS II, vol. 47 no. 9, pp. 954–958, Sep. 2000.
[38] C.-C.Chen, et al., "A Low-Cost CMOS Smart Temperature Sensor Using a Thermal-Sensing and Pulse-Shrinking Delay Line," IEEE Sensors Journal, vol.14, no. 1, pp. 278-284, Jan. 2014.
[39] R. Szplet et al., “An FPGA-Integrated Time-to-Digital Converter Based on Two-Stage Pulse Shrinking,” IEEE Trans. Instrum. Meas., vol. 59, no. 6, pp. 1663-1670,
97
June. 2010.
[40] 朱哲勳,2017,基於脈衝擴增之全數位CMOS數位至時間轉換器,國立高雄科技大學,碩士論文。[41] P. Chen, et al., "A Time-Domain SAR Smart Temperature Sensor With Curvature Compensation and a 3σ Inaccuracy of −0.4°C ∼ +0.6°C Over a 0°C to 90°C Range," in IEEE JSSC, vol. 45, no. 3, pp. 600-609, March 2010.
[42] C.-C.Chen, et al., Area-efficient all-digital pulse-shrinking smart temperature sensor with improved accuracy and resolution. Rev Sci Instrum. 2018;89(12):125002.
[43] Q. Hunag, et al., “An Energy Efficient requency Domain CMOS Temperature Sensor With Switched Vernier Time--to--Digital Conversion,” IEEE Sensors Journal, vol. 17, no. 10, pp. 3001-3011, May. 2017.
[44] T. Anand, et al., “A VCO Based Highly Digital Temperature Sensor With 0.034 °C/mV Supply Sensitivity,” IEEE JSSC, vol. 51, no. 11, pp. 2651-2663, Nov. 2016.
[45] C.-C.Chen, et al., "A Low Cost CMOS Smart Temperature Sensor Using a Thermal Sensing and Pulse Shrinking Delay Line," IEEE Sensors Journal, vol. 14, no. 1, pp. 278-284, Jan. 2014.
[46] C.-C. Chen, et al., “ An Accurate CMOS Delay-Line-Based Smart Temperature Sensor for Low-Power Low-Cost Systems,” Meas. Sci. Technol., Vol. 17, No 4, pp. 840-846, Apr. 2006.
[47] P. Chen, et al., "A time-to-digital-converter-based CMOS smart temperature sensor," in IEEE JSSC, vol. 40, no. 8, pp. 1642-1648, Aug. 2005.