|
Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., . . . Petersen, R. C. (2013). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Focus, 11(1), 96-106. Ammann, E. M., Pottala, J. V., Robinson, J. G., Espeland, M. A., & Harris, W. S. (2017). Erythrocyte omega-3 fatty acids are inversely associated with incident dementia: secondary analyses of longitudinal data from the women's health Initiative memory study (WHIMS). Prostaglandins, Leukotrienes and Essential Fatty Acids, 121, 68-75. Andrieu, S., Guyonnet, S., Coley, N., Cantet, C., Bonnefoy, M., Bordes, S., . . . Dartigues, J.-F. (2017). Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT): a randomised, placebo-controlled trial. The Lancet Neurology, 16(5), 377-389. Arellanes, I. C., Choe, N., Solomon, V., He, X., Kavin, B., Martinez, A. E., . . . Kim, G. (2020). Brain delivery of supplemental docosahexaenoic acid (DHA): A randomized placebo-controlled clinical trial. EBioMedicine, 59, 102883. Arterburn, L. M., Hall, E. B., & Oken, H. (2006). Distribution, interconversion, and dose response of n− 3 fatty acids in humans. The American journal of clinical nutrition, 83(6), 1467S-1476S. Barberger-Gateau, P., Raffaitin, C., Letenneur, L., Berr, C., Tzourio, C., Dartigues, J.-F., & Alpérovitch, A. (2007). Dietary patterns and risk of dementia: the Three-City cohort study. Neurology, 69(20), 1921-1930. Baylin, A., & Campos, H. (2006). The use of fatty acid biomarkers to reflect dietary intake. Current opinion in lipidology, 17(1), 22-27. Burckhardt, M., Herke, M., Wustmann, T., Watzke, S., Langer, G., & Fink, A. (2016). Omega‐3 fatty acids for the treatment of dementia. Cochrane Database of Systematic Reviews(4). Calon, F., & Cole, G. (2007). Neuroprotective action of omega-3 polyunsaturated fatty acids against neurodegenerative diseases: evidence from animal studies. Prostaglandins, Leukotrienes and Essential Fatty Acids, 77(5-6), 287-293. Calon, F., Lim, G. P., Yang, F., Morihara, T., Teter, B., Ubeda, O., . . . Ashe, K. H. (2004). Docosahexaenoic acid protects from dendritic pathology in an Alzheimer's disease mouse model. Neuron, 43(5), 633-645. Cao, L., Tan, L., Wang, H.-F., Jiang, T., Zhu, X.-C., Lu, H., . . . Yu, J.-T. (2016). Dietary patterns and risk of dementia: a systematic review and meta-analysis of cohort studies. Molecular neurobiology, 53(9), 6144-6154. Cederholm, T. (2017). Fish consumption and omega-3 fatty acid supplementation for prevention or treatment of cognitive decline, dementia or Alzheimer's disease in older adults–any news? Current opinion in clinical nutrition and metabolic care, 20(2), 104-109. Chang, J. P.-C., Chen, Y.-T., & Su, K.-P. (2009). Omega-3 polyunsaturated fatty acids (n-3 PUFAs) in cardiovascular diseases (CVDs) and depression: the missing link? Cardiovascular psychiatry and neurology, 2009. Chang, J. P.-C., Lin, C.-Y., Lin, P.-Y., Shih, Y.-H., Chiu, T.-H., Ho, M., . . . Su, K.-P. (2018). Polyunsaturated fatty acids and inflammatory markers in major depressive episodes during pregnancy. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 80, 273-278. Chang, J. P.-C., Su, K.-P., Mondelli, V., Satyanarayanan, S. K., Yang, H.-T., Chiang, Y.-J., . . . Pariante, C. M. (2019). High-dose eicosapentaenoic acid (EPA) improves attention and vigilance in children and adolescents with attention deficit hyperactivity disorder (ADHD) and low endogenous EPA levels. Translational psychiatry, 9(1), 1-9. Chiu, C.-C., Huang, S.-Y., Shen, W. W., & Su, K.-P. (2003). Omega-3 fatty acids for depression in pregnancy. American journal of psychiatry, 160(2), 385-385. Chiu, C.-C., Su, K.-P., Cheng, T.-C., Liu, H.-C., Chang, C.-J., Dewey, M. E., . . . Huang, S.-Y. (2008). The effects of omega-3 fatty acids monotherapy in Alzheimer's disease and mild cognitive impairment: a preliminary randomized double-blind placebo-controlled study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 32(6), 1538-1544. Chouinard-Watkins, R., & Plourde, M. (2014). Fatty acid metabolism in carriers of apolipoprotein E epsilon 4 allele: is it contributing to higher risk of cognitive decline and coronary heart disease? Nutrients, 6(10), 4452-4471. Conquer, J. A., Tierney, M. C., Zecevic, J., Bettger, W. J., & Fisher, R. H. (2000). Fatty acid analysis of blood plasma of patients with Alzheimer's disease, other types of dementia, and cognitive impairment. Lipids, 35(12), 1305-1312. Daiello, L. A., Gongvatana, A., Dunsiger, S., Cohen, R. A., Ott, B. R., & Initiative, A. s. D. N. (2015). Association of fish oil supplement use with preservation of brain volume and cognitive function. Alzheimer's & Dementia, 11(2), 226-235. Dangour, A. D., Allen, E., Elbourne, D., Fasey, N., Fletcher, A. E., Hardy, P., . . . Richards, M. (2010). Effect of 2-yn− 3 long-chain polyunsaturated fatty acid supplementation on cognitive function in older people: a randomized, double-blind, controlled trial. The American journal of clinical nutrition, 91(6), 1725-1732. Dik, M., Jonker, C., Hack, C., Smit, J., Comijs, H., & Eikelenboom, P. (2005). Serum inflammatory proteins and cognitive decline in older persons. Neurology, 64(8), 1371-1377. Edition, F. (2013). Diagnostic and statistical manual of mental disorders. Am Psychiatric Assoc, 21. Eikelenboom, P., Hoozemans, J. J., Veerhuis, R., van Exel, E., Rozemuller, A. J., & van Gool, W. A. (2012). Whether, when and how chronic inflammation increases the risk of developing late-onset Alzheimer's disease. Alzheimer's research & therapy, 4(3), 1-9. Engelhart, M. J., Geerlings, M. I., Meijer, J., Kiliaan, A., Ruitenberg, A., van Swieten, J. C., . . . Breteler, M. M. (2004). Inflammatory proteins in plasma and the risk of dementia: the rotterdam study. Archives of neurology, 61(5), 668-672. Farfara, D., Lifshitz, V., & Frenkel, D. (2008). Neuroprotective and neurotoxic properties of glial cells in the pathogenesis of Alzheimer's disease. Journal of cellular and molecular medicine, 12(3), 762-780. Farooqui, A. A., Ong, W.-Y., Horrocks, L. A., Chen, P., & Farooqui, T. (2007). Comparison of biochemical effects of statins and fish oil in brain: the battle of the titans. Brain research reviews, 56(2), 443-471. First, M. B., & Pincus, H. A. (2002). The DSM-IV Text Revision: rationale and potential impact on clinical practice. Psychiatric services, 53(3), 288-292. Fotuhi, M., Mohassel, P., & Yaffe, K. (2009). Fish consumption, long-chain omega-3 fatty acids and risk of cognitive decline or Alzheimer disease: a complex association. Nature Reviews Neurology, 5(3), 140-152. Freund-Levi, Y., Eriksdotter-Jönhagen, M., Cederholm, T., Basun, H., Faxen-Irving, G., Garlind, A., . . . Palmblad, J. (2006). ω-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: a randomized double-blind trial. Archives of neurology, 63(10), 1402-1408. Godyń, J., Jończyk, J., Panek, D., & Malawska, B. (2016). Therapeutic strategies for Alzheimer's disease in clinical trials. Pharmacological Reports, 68(1), 127-138. Gustaw-Rothenberg, K. (2009). Dietary patterns associated with Alzheimer’s disease: population based study. International journal of environmental research and public health, 6(4), 1335-1340. Harris, W. S. (2007). Omega-3 fatty acids and cardiovascular disease: a case for omega-3 index as a new risk factor. Pharmacological research, 55(3), 217-223. Hjorth, E., Zhu, M., Toro, V. C., Vedin, I., Palmblad, J., Cederholm, T., . . . Basun, H. (2013). Omega-3 fatty acids enhance phagocytosis of alzheimer's disease-related amyloid-β 42 by human microglia and decrease inflammatory markers. Journal of Alzheimer's Disease, 35(4), 697-713. Huang, T. L., Zandi, P., Tucker, K., Fitzpatrick, A., Kuller, L., Fried, L., . . . Carlson, M. (2005). Benefits of fatty fish on dementia risk are stronger for those without APOE ε4. Neurology, 65(9), 1409-1414. Ito, S., Sawada, M., Haneda, M., Ishida, Y., & Isobe, K.-i. (2006). Amyloid-β peptides induce several chemokine mRNA expressions in the primary microglia and Ra2 cell line via the PI3K/Akt and/or ERK pathway. Neuroscience research, 56(3), 294-299. Janssen, C. I., & Kiliaan, A. J. (2014). Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration. Progress in lipid research, 53, 1-17. Jernerén, F., Cederholm, T., Refsum, H., Smith, A. D., Turner, C., Palmblad, J., . . . Wahlund, L.-O. (2019). Homocysteine status modifies the treatment effect of omega-3 fatty acids on cognition in a randomized clinical trial in mild to moderate Alzheimer’s Disease: The OmegAD Study. Journal of Alzheimer's Disease, 69(1), 189-197. Kalmijn, S., Launer, L. J., Ott, A., Witteman, J. C., Hofman, A., & Breteler, M. M. (1997). Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Annals of neurology, 42(5), 776-782. Kueper, J. K., Speechley, M., & Montero-Odasso, M. (2018). The Alzheimer’s disease assessment scale–cognitive subscale (ADAS-Cog): modifications and responsiveness in pre-dementia populations. a narrative review. Journal of Alzheimer's Disease, 63(2), 423-444. Lambert, J., Ibrahim-Verbaas, C., Harold, D., Naj, A., Sims, R., Bellenguez, C., . . . Grenier-Boley, B. (2013). European Alzheimer’s Disease Initiative (EADI); Genetic and Environmental Risk in Alzheimer’s Disease; Alzheimer’s Disease Genetic Consortium; Cohorts for Heart and Aging Research in Genomic Epidemiology. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet, 45(12), 1452-1458. Lim, G. P., Calon, F., Morihara, T., Yang, F., Teter, B., Ubeda, O., . . . Cole, G. M. (2005). A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. Journal of Neuroscience, 25(12), 3032-3040. Lin, P.-Y., Chiu, C.-C., Huang, S.-Y., & Su, K.-P. (2012). A meta-analytic review of polyunsaturated fatty acid compositions in dementia. The Journal of clinical psychiatry, 73(9), 1245-1254. Lin, P.-Y., Huang, S.-Y., & Su, K.-P. (2010). A meta-analytic review of polyunsaturated fatty acid compositions in patients with depression. Biological psychiatry, 68(2), 140-147. Lorente-Cebrián, S., Costa, A. G., Navas-Carretero, S., Zabala, M., Laiglesia, L. M., Martínez, J. A., & Moreno-Aliaga, M. J. (2015). An update on the role of omega-3 fatty acids on inflammatory and degenerative diseases. Journal of physiology and biochemistry, 71(2), 341-349. Lu, D.-Y., Tsao, Y.-Y., Leung, Y.-M., & Su, K.-P. (2010). Docosahexaenoic acid suppresses neuroinflammatory responses and induces heme oxygenase-1 expression in BV-2 microglia: implications of antidepressant effects for omega-3 fatty acids. Neuropsychopharmacology, 35(11), 2238-2248. Lukiw, W. J., & Bazan, N. G. (2010). Inflammatory, apoptotic, and survival gene signaling in Alzheimer’s disease. Molecular neurobiology, 42(1), 10-16. Luo, C., Ren, H., Yao, X., Shi, Z., Liang, F., Kang, J. X., . . . Su, H. (2018). Enriched brain omega-3 polyunsaturated fatty acids confer neuroprotection against microinfarction. EBioMedicine, 32, 50-61. McGeer, P. L., Schulzer, M., & McGeer, E. G. (1996). Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer's disease: a review of 17 epidemiologic studies. Neurology, 47(2), 425-432. Moon, D.-O., Kim, K.-C., Jin, C.-Y., Han, M.-H., Park, C., Lee, K.-J., . . . Kim, G.-Y. (2007). Inhibitory effects of eicosapentaenoic acid on lipopolysaccharide-induced activation in BV2 microglia. International immunopharmacology, 7(2), 222-229. Moroney, J., Bagiella, E., Desmond, D., Hachinski, V. C., Mölsä, P., Gustafson, L., . . . Rosen, W. (1997). Meta-analysis of the Hachinski Ischemic Score in pathologically verified dementias. Neurology, 49(4), 1096-1105. Morris, M. C., Evans, D. A., Bienias, J. L., Tangney, C. C., Bennett, D. A., Wilson, R. S., . . . Schneider, J. (2003). Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Archives of neurology, 60(7), 940-946. Owen, A. J., Peter‐Przyborowska, B. A., Hoy, A. J., & McLennan, P. L. (2004). Dietary fish oil dose‐and time‐response effects on cardiac phospholipid fatty acid composition. Lipids, 39(10), 955. Patel, N. S., Paris, D., Mathura, V., Quadros, A. N., Crawford, F. C., & Mullan, M. J. (2005). Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer's disease. Journal of neuroinflammation, 2(1), 1-10. Patterson, C. (2018). World alzheimer report 2018. Pierigè, F., Serafini, S., Rossi, L., & Magnani, M. (2008). Cell-based drug delivery. Advanced drug delivery reviews, 60(2), 286-295. Quinn, J. F., Raman, R., Thomas, R. G., Yurko-Mauro, K., Nelson, E. B., Van Dyck, C., . . . Weiner, M. (2010). Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial. Jama, 304(17), 1903-1911. Ren, H., Luo, C., Feng, Y., Yao, X., Shi, Z., Liang, F., . . . Su, H. (2017). Omega‐3 polyunsaturated fatty acids promote amyloid‐β clearance from the brain through mediating the function of the glymphatic system. The FASEB Journal, 31(1), 282-293. Roberts, R. O., Cerhan, J. R., Geda, Y. E., Knopman, D. S., Cha, R. H., Christianson, T. J., . . . Petersen, R. C. (2010). Polyunsaturated fatty acids and reduced odds of MCI: the Mayo Clinic Study of Aging. Journal of Alzheimer's Disease, 21(3), 853-865. Sanchez-Mejia, R. O., & Mucke, L. (2010). Phospholipase A2 and arachidonic acid in Alzheimer's disease. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1801(8), 784-790. Scarmeas, N., Stern, Y., Mayeux, R., Manly, J. J., Schupf, N., & Luchsinger, J. A. (2009). Mediterranean diet and mild cognitive impairment. Archives of neurology, 66(2), 216-225. Schultzberg, M., Lindberg, C., Aronsson, A. F., Hjorth, E., Spulber, S. D., & Oprica, M. (2007). Inflammation in the nervous system--physiological and pathophysiological aspects. Physiology & behavior, 92(1-2), 121-128. Sinn, N., Milte, C. M., Street, S. J., Buckley, J. D., Coates, A. M., Petkov, J., & Howe, P. R. (2012). Effects of n-3 fatty acids, EPA v. DHA, on depressive symptoms, quality of life, memory and executive function in older adults with mild cognitive impairment: a 6-month randomised controlled trial. British Journal of Nutrition, 107(11), 1682-1693. Smith, A. D., & Refsum, H. (2016). Homocysteine, B vitamins, and cognitive impairment. Annu Rev Nutr, 36(1), 211-239. Smits, H. A., Rijsmus, A., van Loon, J. H., Wat, J. W., Verhoef, J., Boven, L. A., & Nottet, H. S. (2002). Amyloid-β-induced chemokine production in primary human macrophages and astrocytes. Journal of neuroimmunology, 127(1-2), 160-168. Söderberg, M., Edlund, C., Kristensson, K., & Dallner, G. (1991). Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids, 26(6), 421. Song, C., Shieh, C.-H., Wu, Y.-S., Kalueff, A., Gaikwad, S., & Su, K.-P. (2016). The role of omega-3 polyunsaturated fatty acids eicosapentaenoic and docosahexaenoic acids in the treatment of major depression and Alzheimer's disease: acting separately or synergistically? Progress in lipid research, 62, 41-54. Su, K.-P. (2009). Biological Mechanism of Antidepressant Effect of Omega–3 Fatty Acids: How Does Fish Oil Act as a ‘Mind-Body Interface’? Neurosignals, 17(2), 144-152. Su, K.-P. (2015). Nutrition, psychoneuroimmunology and depression: the therapeutic implications of omega-3 fatty acids in interferon-α-induced depression. BioMedicine, 5(4). Su, K.-P., Huang, S.-Y., Chiu, C.-C., & Shen, W. W. (2003). Omega-3 fatty acids in major depressive disorder: a preliminary double-blind, placebo-controlled trial. European Neuropsychopharmacology, 13(4), 267-271. Su, K.-P., Wang, S.-M., & Pae, C.-U. (2013). Omega-3 polyunsaturated fatty acids for major depressive disorder. Expert opinion on investigational drugs, 22(12), 1519-1534. Tan, Z., Beiser, A., Vasan, R., Roubenoff, R., Dinarello, C., Harris, T., . . . Wolf, P. (2007). Inflammatory markers and the risk of Alzheimer disease: the Framingham Study. Neurology, 68(22), 1902-1908. Trollor, J. N., Smith, E., Agars, E., Kuan, S. A., Baune, B. T., Campbell, L., . . . Kochan, N. A. (2012). The association between systemic inflammation and cognitive performance in the elderly: the Sydney Memory and Ageing Study. Age, 34(5), 1295-1308. Tu, C.-H., Chen, C.-M., Yang, C.-C., Gałecki, P., & Su, K.-P. (2020). Brain Responses to Emotional Stimuli after Eicosapentaenoic Acid and Docosahexaenoic Acid Treatments in Major Depressive Disorder: Toward Personalized Medicine with Anti-Inflammatory Nutraceuticals. Journal of personalized medicine, 10(4), 283. Umhau, J. C., Zhou, W., Carson, R. E., Rapoport, S. I., Polozova, A., Demar, J., . . . Esposito, G. (2009). Imaging incorporation of circulating docosahexaenoic acid into the human brain using positron emission tomography. Journal of lipid research, 50(7), 1259-1268. Whalley, L. J., Deary, I. J., Starr, J. M., Wahle, K. W., Rance, K. A., Bourne, V. J., & Fox, H. C. (2008). n–3 Fatty acid erythrocyte membrane content, APOE ε4, and cognitive variation: an observational follow-up study in late adulthood. The American journal of clinical nutrition, 87(2), 449-454. Wright, C. B., Sacco, R. L., Rundek, T. R., Delman, J. B., Rabbani, L. E., & Elkind, M. S. (2006). Interleukin-6 is associated with cognitive function: the Northern Manhattan Study. Journal of Stroke and Cerebrovascular Diseases, 15(1), 34-38. Xia, M., Qin, S., Wu, L., Mackay, C. R., & Hyman, B. T. (1998). Immunohistochemical study of the β-chemokine receptors CCR3 and CCR5 and their ligands in normal and Alzheimer's disease brains. The American journal of pathology, 153(1), 31-37. Yaffe, K., Kanaya, A., Lindquist, K., Simonsick, E. M., Harris, T., Shorr, R. I., . . . Newman, A. B. (2004). The metabolic syndrome, inflammation, and risk of cognitive decline. Jama, 292(18), 2237-2242. Yan, L., Xie, Y., Satyanarayanan, S. K., Zeng, H., Liu, Q., Huang, M., . . . Su, K.-P. (2020). Omega-3 polyunsaturated fatty acids promote brain-to-blood clearance of β-Amyloid in a mouse model with Alzheimer’s disease. Brain, behavior, and immunity, 85, 35-45. Zhu, M., Allard, J. S., Zhang, Y., Perez, E., Spangler, E. L., Becker, K. G., & Rapp, P. R. (2014). Age-Related Brain Expression and Regulation of the Chemokine CCL4/MIP-1A in APP/PS1 Double-Transgenic Mice. Journal of Neuropathology & Experimental Neurology, 73(4), 362-374. Zotova, E., Nicoll, J. A., Kalaria, R., Holmes, C., & Boche, D. (2010). Inflammation in Alzheimer's disease: relevance to pathogenesis and therapy. Alzheimers Res Ther, 2(1), 1-9.
|