|
[1]Bachrathy D, Stepan G (2013) Improved prediction of stability lobes with extended multi frequency solution. CIRP Annals 62(1):411–414. [2]Kuljanic E, Sortino M, Totis G (2008) Multisensor approaches for chatter detection in milling. J. Sound Vib. 312:672–693. [3]Schmitz TL (2003) Chatter recognition by a statistical evaluation of the synchronously sampled audio signal. J. Sound Vib. 262(3):721–730. [4]Dombovari Z, Iglesias A, ZatarainM, Insperger T (2011) Prediction ofmultiple dominant chatter frequencies in milling processes. Int. J. Mach. ToolsManuf. 51(6):457–464. [5]Stepan G, Dombovari Z, Munoa J (2011) Identification of cutting force characteristics based on chatter experiments. CIRP Annals 60(1):113–116. [6]Hajdu D, Borgioli F, Michiels W, Insperger T, Stepan G (2020) Robust stability of milling operations based on pseudospectral approach. Int. J. Mach. Tools Manuf. 149:103516. [7]Y. Altintas, M. Weck, Chatter stability of metal cutting and grinding, CIRP Ann. 53 (2004) 619–642. [8]J. Tlusty, F. Ismail, Basic non-linearity in machining chatter, CIRP Ann. 30 (1981) 299–304. [9]Y. Altintas, E. Budak, Analytical prediction of stability lobes in milling, CIRP Ann. 44 (1995) 357–362. [10]G. Quintana, J. Ciurana, Chatter in machining processes: a review, Int. J. Mach. Tools Manuf. 51 (2011) 363–376. [11]Y. Mohammadi, K. Ahmadi, Frequency domain analysis of regenerative chatter in machine tools with linear time periodic dynamics, Mech. Syst. Sig.Process. 120 (2019) 378–391. [12]K. Yang, G. Wang, Y. Dong, Q. Zhang, L. Sang, Early chatter identification based on optimized variational mode decomposition, Mech. Syst. Sig. Process. 115 (2019) 238–254. [13]E. Kuljanic, G. Totis, M. Sortino, Development of an intelligent multisensory chatter detection system in milling, Mech. Syst. Sig. Process. 23 (2009) 1704–1718. [14]L. Zhu, C. Liu, Recent progress of chatter prediction, detection and suppression in milling, Mech. Syst. Sig. Process. 143 (2020), 106840. [15]Li K, He S, Li B, Liu H, Mao X, Shi C. A novel online chatter detection method in milling process based on multiscale entropy and gradient tree boosting. Mech Syst Signal Process 2020;135:106385. [16]D. Mourtzis, E. Vlachou, N. Milas, Industrial big data as a result of iot adoption in manufacturing, in: Proc. CIRP Conf., 2016, pp. 290–295. [17]Munoa J, Beudaert X, Dombovari,Z, Altintas Y, Budak E, Brecher C, Stepan G. Chatter suppression techniques in metal cutting. CIRP Ann Manuf Technol 2016; 65:785–808. [18]Liu Y, Wang X, Lin J, Kong X. An adaptive grinding chatter detection method considering the chatter frequency shift characteristic. Mech SystSignal Process 2020;142:106672. [19]García Plaza E, Nú˜nez L´opez PJ. Application of the wavelet packet transform to vibration signals for surface roughness monitoring in CNC turning operations. Mech Syst Signal Process 2018;98:902–19. [20]Sener B, Gudelek MU, Ozbayoglu AM, Unver HO. A novel chatter detection method for milling using deep convolution neural networks. Measurement 2021; 182:109689. [21]Morgan G, Cheng RQ, Altintas Y, Ridgway K. An expert troubleshooting system for the milling process. Int J Mach Tool Manuf 2007;47(9):1417–25. [22]I. Mancisidor, R. Barcena, J. Munoa, A. Etxebarria. Design of a bench hardware-in-the-loop system for the study of chatter in turning. Eur. Control Conf. July 17-19, (2013), Zürich, Switzerland, p. 791–6. https://doi.org/10.23919/ECC.2013.6669683. [23]Wei-chen Lee, Hsu-cheng Cheng, Ching-Chih Wei, Development of a machining monitoring and chatter suppression device. IEEE Industrial Cyber-Physical Systems (ICPS). May 15-18,(2018), St. Petersburg, Russia. https://ieeexplore.ieee.org/document/8387692 [24]Longyang Ding, Yuxin Sun, Zhenhua Xiong,Early Chatter Detection based on Logistic Regression with Time and Frequency Domain Features.IEEE International Conference on Advanced Intelligent Mechatronics (AIM).July 3-7,(2017), Munich, Germany. https://ieeexplore.ieee.org/abstract/document/8014158?casa_token=X6Xhjb216FMAAAAA:E0H3EVTrNlpGa3PmVc5wv9bgqYjRHYmLEj3plbCkqPPa9VZXUkB1TST_0RFPYFo5Z6xhsVsqOA [25]Batihan Sener, Gokberk Serin, M. Ugur Gudeleky, A. Murat Ozbayoglu,Hakki Ozgur Unver.Intelligent Chatter Detection in Milling using Vibration Data Features and Deep Multi-Layer Perceptron.IEEE International Conference on Big Data (Big Data).Dec 10-13,(2020), Atlanta, GA, USA. https://ieeexplore.ieee.org/document/9378223 [26]Peng Qin, Min Wang, Lele Sun, Yanlin Zhang, Research on the Influence of Feed Speed Variation on Turning Chatter Stability, IEEE 11th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT).Jan 20-22,(2020). Cape town, South Africa. https://ieeexplore.ieee.org/document/9041219 [27]Zhang Yongliang, Liu Yanyong, Lin Rui, The review about mechanisms and control of cutting chatter,International Conference on Mechanic Automation and Control Engineering.June 26-28,(2010), Wuhan. https://ieeexplore.ieee.org/document/5536771 [28]Dong-Hoon Kim, Jun-Yeob Song, Hung-Sun Son, Real-time monitoring and compensation of chatter vibration in machine tools, Proceedings of 2011 International Conference on Fluid Power and Mechatronics.Aug 17-20,(2011), Beijing, China. https://ieeexplore.ieee.org/document/6045838 [29]Wei-chen Lee, Hsu-cheng Cheng, Ching-Chih Wei, Development of a machining monitoring and chatter suppression device, IEEE Industrial Cyber-Physical Systems (ICPS).May 15-18,(2018), St. Petersburg, Russia. https://ieeexplore.ieee.org/document/8387692 [30]Petr Hadraba, Zdeněk Hadaš, Virtual Twin of The Multi-spindle Lathe for The Chatter Time-domain Analysis, 18th International Conference on Mechatronics - Mechatronika (ME).Dec 5-7,(2018), Brno, Czech Republic. https://ieeexplore.ieee.org/document/8624805 [31]Jian Zhang, Shengxi Wu, Jiazhuo Xu, An diagnosis method of chatter marks based on PCA,8th World Congress on Intelligent Control and Automation.July 7-9,(2010), Jinan, China. https://ieeexplore.ieee.org/document/5554142 [32]National Instruments, 2020 ,“Measuring Vibration with Accelerometers ”,加速規作用原理參考 [33]阻尼比.(2015,August,7).維基百科. https://zh.m.wikipedia.org/wiki/%E9%98%BB%E5%B0%BC%E6%AF%94 [34]通信m班長. (2019, July 11). Matlab實現FFT,畫出正確的頻譜圖. 每日頭條. https://kknews.cc/news/rlx3yax.html [35]詹子其,王昱荃,(2021,Dec 11).中華民國專利發明第I749742號,工具機主軸診斷方法,國立虎尾科技大學,https://twpat3.tipo.gov.tw/twpatc/twpatkm?.a27e084CC0011000000030000000000^500000001020100000010000421c [36]210.61.91.150. (2017,February,3).卡爾曼濾波. 維基百科. https://zh.m.wikipedia.org/zh/%E5%8D%A1%E5%B0%94%E6%9B%BC%E6%BB%A4%E6%B3%A2 [37]戴文亮. (2020, March 28). 高斯混合模型. 知乎. https://zhuanlan.zhihu.com/p/30483076 [38]Danwenxuan.(2016,November,24). PCA降維操作. 博客. https://blog.csdn.net/danwenxuan/article/details/76647940 [39]G.Y. Liu et al., “Path loss measurements of indoor LTE system for the Internet of Things,” Appl. Sci. 2017, 7, 537. [40]A.Kusiak, “Smart manufacturing must embrace big data,” Nature 2017, 544, 23–25. [41]M. Fujishima et al., “Study of sensing technologies for machine tools,” C.I.R.P. J. Manuf. Sci. Technol. 2016, 14, 71–75. [42]R.F. Babiceanu et al., “Big data and virtualization for manufacturing cyber-physical systems: A survey of the current status and future outlook,” Comput. Ind. 2016, 81, 128–137. [43]J. Lee et al., “Introduction to cyber manufacturing,” Manuf. Lett. 2016, 8, 11–15. [44]X. Xu et al., “Small data-driven convolution neural networks for subtle roller defect inspection,” Appl. Sci. 2019, 9, 1364. [45]G.Y. Tian et al., “Internet-based manufacturing: A review and a new infrastructure for distributed intelligent manufacturing,” J. Intell. Manuf. 2002, 13, 323–338 [46]Wilcoxon 工業級振動感測器. (n.d.). G-TECH. https://www.g-tech-inst.com/products_detail/202102170022.html
|