[1] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang. Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials. 6 (2004) 299-303.
[2] M. Klimova, D. Shaysultanov, A. Semenyuk, S. Zherebtsov, G. Salishchev, and N. Stepanov. Effect of nitrogen on mechanical properties of CoCrFeMnNi high entropy alloy at room and cryogenic temperatures. Journal of Alloys and Compounds. 849 (2020) 156633.
[3] L. Qiao, Z. Lai, and J. Zhu. A promising new class of multi-component alloys with exceptional mechanical properties. Journal of Alloys and Compounds. 847 (2020) 155929.
[4] X. Gao, Z. Yu, W. Hu, Y. Lu, Z. Zhu, Y. Ji, Y. Lu, Z. Qin, and X. Lu. In situ strengthening of CrMnFeCoNi high-entropy alloy with Al realized by laser additive manufacturing. Journal of Alloys and Compounds. 847 (2020) 156563.
[5] K. Alagarsamy, A. Fortier, M. Komarasamy, N. Kumar, A. Mohammad, S. Banerjee, H. C. Han, and R. S. Mishra. Mechanical properties of high entropy alloy Al0.1CoCrFeNi for peripheral vascular stent application. Cardiovascular Engineering and Technology. 7 (2016) 448-454.
[6] Y. Duan, L. Song, Y. Cui, H. Pang, X. Zhang, and T. Wang. FeCoNiCuAl high entropy alloys microwave absorbing materials: Exploring the effects of different Cu contents and annealing temperatures on electromagnetic properties. Journal of Alloys and Compounds. 848 (2020) 156491.
[7] F. X. Zhang, Y. Tong, M. Kirkham, A. Huq, H. Bei, W. J. Weber, and Y. Zhang. Structural disorder, phase stability and compressibility of refractory body-centered cubic solid-solution alloys. Journal of Alloys and Compounds. 847 (2020) 155970.
[8] C. Chen, Y. Fan, H. Zhang, J. Hou, W. Zhang, P. Wei, W. Wang, J. Qin, R. Wei, T. Wang, and F. Li. A novel Fe-Co-Ni-Si high entropy alloy with high yield strength, saturated magnetization and Curie temperature. Materials Letters. 281 (2020) 128653.
[9] B. X. Cao, C. Wang, T. Yang, and C. T. Liu. Cocktail effects in understanding the stability and properties of face-centered-cubic high-entropy alloys at ambient and cryogenic temperatures. Scripta Materialia. 187 (2020) 250-255.
[10] T. Yang, Y. L. Zhao, Y. Tong, Z. B. Jiao, J. Wei, J. X. Cai, X. D. Han, D. Chen, A. Hu, J. J. Kai, K. Lu, Y. Liu, and C. T. Liu. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science. 362 (2018) 933-937.
[11] X. H. Du, W. P. Li, H. T. Chang, T. Yang, G. S. Duan, B. L. Wu, J. C. Huang, F. R. Chen, C. T. Liu, W. S. Chuang, Y. Lu, M. L. Sui, and E. W. Huang. Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy. Nature Communications. 11 (2020) 1-7.
[12] M. Schneider, E. P. George, T. J. Manescau, T. Záležák, J. Hunfeld, A. Dlouhý, G. Eggeler, and G. Laplanche. Analysis of strengthening due to grain boundaries and annealing twin boundaries in the CrCoNi medium-entropy alloy. International Journal of Plasticity. 124 (2020) 155-169.
[13] T. Zhang, D. Wang, J. Zhu, H. Xiao, C. T. Liu, and Y. Wang. Non-conventional transformation pathways and ultrafine lamellar structures in γ-TiAl alloys. Acta Materialia. 189 (2020) 25-34.
[14] J. Li, L. Li, C. Jiang, Q. Fang, F. Liu, Y. Liu, and P. K. Liaw. Probing deformation mechanisms of gradient nanostructured CrCoNi medium entropy alloy. Journal of Materials Science & Technology. 57 (2020) 85-91.
[15] B. Yin, S. Yoshida, N. Tsuji, and W. A. Curtin. Yield strength and misfit volumes of NiCoCr and implications for short-range-order. Nature Communications. 11 (2020) 1-7.
[16] I. A. Alhafez, C. J. Ruestes, S. Zhao, A. M. Minor and H. M. Urbassek. Dislocation structures below a nano-indent of the CoCrNi medium-entropy alloy. Materials Letters. 283 (2021) 128821.
[17] P. Shi, W. Ren, T. Zheng, Z. Ren, X. Hou, J. Peng, P. Hu, Y. Gao, Y. Zhong, and P. K. Liaw. Enhanced strength–ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae. Nature Communications. 10 (2019) 1-8.
[18] R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, M. Asta, R. O. Ritchie, and A. M. Minor. Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature. 581 (2020) 283-287.
[19] F. Wang, G. H. Balbus, S. Xu, Y. Su, J. Shin, P. F. Rottmann, K. E. Knipling, J. C. Stinville, L. H. Mills, O. N. Senkov, I. J. Beyerlein, T. M. Pollock, and D. S. Gianola. Multiplicity of dislocation pathways in a refractory multiprincipal element alloy. Science. 370 (2020) 95-101.
[20] J. Cairney. A rival to superalloys at high temperatures. Science. 370 (2020) 37-38.
[21] C. E. Slone, J. Miao, E. P. George, and M. J. Mills. Achieving ultra-high strength and ductility in equiatomic CrCoNi with partially recrystallized microstructures. Acta Materialia. 165 (2019) 496-507.
[22] W. M. Choi, Y. H. Jo, S. S. Sohn, S. Lee, and B. J. Lee. Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study. npj Computational Materials. 4 (2018) 1-9.
[23] G. Calafiore, A. Koshelev, T. P. Darlington, N. J. Borys, M. Melli, A. Polyakov, G. Cantarella, F. I. Allen, P. Lum, E. Wong, S. Sassolini, A. Weber-Bargioni, P. J. Schuck, S. Cabrini, and K. Munechika. Campanile near-field probes fabricated by nanoimprint lithography on the facet of an optical fiber. Scientific Reports. 7 (2017) 1-7.
[24] A. Jacobo-Martín, M. Rueda, J. J. Hernández, I. Navarro-Baena, M. A. Monclús, J. M. Molina-Aldareguia, and I. Rodríguez. Bioinspired antireflective flexible films with optimized mechanical resistance fabricated by roll to roll thermal nanoimprint. Scientific Reports. 11 (2021) 1-15.
[25] S. V. Sreenivasan. Nanoimprint lithography steppers for volume fabrication of leading-edge semiconductor integrated circuits. Microsystems & Nanoengineering. 3 (2017) 1-19.
[26] K. H. Lin, S. Y. Chang, Y. C. Lo, C. C. Wang, S. J. Lin, and J. W. Yeh. Differences in texture evolution from low-entropy to high-entropy face-centered cubic alloys during tension test. Intermetallics. 118 (2020) 106635.
[27] E. W. Huang, D. Yu, J. W. Yeh, C. Lee, K. An, and S. Y. Tu. A study of lattice elasticity from low entropy metals to medium and high entropy alloys. Scripta Materialia. 101 (2015) 32-35.
[28] Y. T. Chen, Y. J. Chang, H. Murakami, T. Sasaki, K. Hono, C. W. Li, K. Kakehi, J. W. Yeh, and A. C. Yeh. Hierarchical microstructure strengthening in a single crystal high entropy superalloy. Scientific Reports. 10 (2020) 1-11.
[29] C. C. Yen, G. R. Huang, Y. C. Tan, H. W. Yeh, D. J. Luo, K. T. Hsieh, E. W. Huang, J. W. Yeh, S. J. Lin, C. C. Wang, C. L. Kuo, S. Y. Chang, and Y. C. Lo. Lattice distortion effect on elastic anisotropy of high entropy alloys. Journal of Alloys and Compounds. 818 (2020) 152876.
[30] R. Carroll, C. Lee, C. W. Tsai, J. W. Yeh, J. Antonaglia, B. A. Brinkman, M. LeBlanc, X. Xie, S. Chen, P. K. Liaw, and K. A. Dahmen. Experiments and model for serration statistics in low-entropy, medium-entropy and high-entropy alloys. Scientific Reports. 5 (2015) 16997.
[31] G. Laplanche, M. Schneider, F. Scholz, J. Frenzel, G. Eggeler, and J. Schreuer. Processing of a single-crystalline CrCoNi medium-entropy alloy and evolution of its thermal expansion and elastic stiffness coefficients with temperature. Scripta Materialia. 177 (2020) 44-48.
[32] J. M. Sanchez, I. Vicario, J. Albizuri, T. Guraya, and E. M. Acuña. Design, Microstructure and Mechanical Properties of Cast Medium Entropy Aluminium Alloys. Scientific Reports. 9 (2019) 1-12.
[33] S. Yoshida, T. Ikeuchi, T. Bhattacharjee, Y. Bai, A. Shibata, and N. Tsuji. Effect of elemental combination on friction stress and Hall-Petch relationship in face-centered cubic high/medium entropy alloys. Acta Materialia. 171 (2019) 201-215.
[34] Q. J. Li, H. Sheng, and E. Ma. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways. Nature Communications. 10 (2019) 1-11.
[35] Y. H. Jo, W. M. Choi, D. G. Kim, A. Zargaran, S. S. Sohn, H. S. Kim, B. J. Lee, N. J. Kim, and S. Lee. FCC to BCC transformation-induced plasticity based on thermodynamic phase stability in novel V10Cr10Fe45CoxNi35−x medium-entropy alloys. Scientific Reports. 9 (2019) 1-14.
[36] H. Luo, S. S. Sohn, W. Lu, L. Li, X. Li, C. K. Soundararajan, W. Krieger, Z. Li, and D. Raabe. A strong and ductile medium-entropy alloy resists hydrogen embrittlement and corrosion. Nature Communications. 11 (2020) 1-8.
[37] W. Woo, J. S. Jeong, D. K. Kim, C. M. Lee, S. H. Choi, J. Y. Suh, S. Y. Lee, S. Harjo, and T. Kawasaki. Stacking Fault Energy Analyses of Additively Manufactured Stainless Steel 316L and CrCoNi Medium Entropy Alloy Using In Situ Neutron Diffraction. Scientific Reports. 10 (2020) 1-15.
[38] M. Yang, L. Zhou, C. Wang, P. Jiang, F. Yuan, E. Ma, and X. Wu. High impact toughness of CrCoNi medium-entropy alloy at liquid-helium temperature. Scripta Materialia. 172 (2019) 66-71.
[39] C. L. Tracy, S. Park, D. R. Rittman, S. J. Zinkle, H. Bei, M. Lang, R. C. Ewing, and W. L. Mao. High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi. Nature Communications. 8 (2017) 1-6.
[40] S. Huang, H. Huang, W. Li, D. Kim, S. Lu, X. Li, E. Holmstrom, S. K. Kwon, and L. Vitos. Twinning in metastable high-entropy alloys. Nature Communications. 9 (2018) 1-7.
[41] Y. T. Chen, Y. J. Chang, H. Murakami, T. Sasaki, K. Hono, C. W. Li, K. Kakehi, J. W. Yeh, and A. C. Yeh. Hierarchical microstructure strengthening in a single crystal high entropy superalloy. Scientific Reports. 10 (2020) 1-11.
[42] E. Ma, and X. Wu. Tailoring heterogeneities in high-entropy alloys to promote strength–ductility synergy. Nature Communications. 10 (2019) 1-10.
[43] Z. Zhou, Y. Zhou, Q. He, Z. Ding, F. Li, and Y. Yang. Machine learning guided appraisal and exploration of phase design for high entropy alloys. npj Computational Materials. 5 (2019) 1-9.
[44] N. T. C. Nguyen, P. Asghari-Rad, J. W. Bae, P. Sathiyamoorthi, and H. S. Kim. Superplastic Behavior in High-Pressure Torsion-Processed Mo7.5Fe55Co18Cr12.5Ni7 Medium-Entropy Alloy. Metallurgical and Materials Transactions A. 52 (2021) 1-7.
[45] T. Csanádi, E. Castle, M. J. Reece, and J. Dusza. Strength enhancement and slip behaviour of high-entropy carbide grains during micro-compression. Scientific Reports. 9 (2019) 1-14.
[46] R. R. Eleti, M. Klimova, M. Tikhonovsky, N. Stepanov, and S. Zherebtsov. Exceptionally high strain-hardening and ductility due to transformation induced plasticity effect in Ti-rich high-entropy alloys. Scientific Reports. 10 (2020) 1-8.
[47] L. Zhang, and Q. N. Fan. Effect of quenching temperature and size on atom movement and local structural change for small copper clusters containing 51–54 atoms during quenching processes. Indian Journal of Physics. 90 (2016) 9-20.
[48] D. Q. Doan, T. H. Fang, and T. H. Chen. Influences of grain size and temperature on tribological characteristics of CuAlNi alloys under nanoindentation and nanoscratch. International Journal of Mechanical Sciences. 185 (2020) 105865.
[49] S. Li, J. C. Zhang, and Z. D. Sha. Mechanical behavior of metallic glasses with pressure-promoted thermal rejuvenation. Journal of Alloys and Compounds. 848 (2020) 156597.
[50] Y. Li, B. Yang, Z. Yu, S. Wang, and Q. Wang. A study on effects of stone–thrower–wales defective carbon nanotubes on glass transition temperature of polymer composites using molecular dynamics simulations. Computational Materials Science. 186 (2021) 110005.
[51] Z. Shi, Z. Jin, X. Guo, X. Shi, and J. Guo. Interfacial friction properties in diamond polishing process and its molecular dynamic analysis. Diamond and Related Materials. 100 (2019) 107546.
[52] H. Dai, F. Zhang, and Y. Zhou. Numerical study of three-body diamond abrasive polishing single crystal Si under graphene lubrication by molecular dynamics simulation. Computational Materials Science. 171 (2020) 109214.
[53] H. Dai, Y. Zhou, P. Li, and Y. Zhang. Evolution of nano-cracks in single-crystal silicon during ultraprecision mechanical polishing. Journal of Manufacturing Processes. 58 (2020) 627-636.
[54] G. Wang, Z. Feng, Q. Zheng, B. Li, and H. Zhou. Molecular dynamics simulation of nano-polishing of single crystal silicon on non-continuous surface. Materials Science in Semiconductor Processing. 118 (2020) 105168.
[55] T. D. Jacobs, K. E. Ryan, P. L. Keating, D. S. Grierson, J. A. Lefever, K. T. Turner, J. A. Harrison, and R. W. Carpick. The effect of atomic-scale roughness on the adhesion of nanoscale asperities: a combined simulation and experimental investigation. Tribology Letters. 50 (2013) 81-93.
[56] K. Liang, X. Zhang, J. Qiao, S. Pan, and S. Feng. Effects of minor addition of Al and Ag elements on the atomic structure and mechanical property of ZrCu-based metallic glasses. Journal of Non-Crystalline Solids. 550 (2020) 120385.
[57] A. Gaikwad, J. Odujole, and S. Desai. Atomistic investigation of process parameter variations on material deformation behavior in nanoimprint lithography of gold. Precision Engineering. 64 (2020) 7-19.
[58] D. Q. Doan, T. H. Fang, A. S. Tran, and T. H. Chen. Residual stress and elastic recovery of imprinted Cu-Zr metallic glass films using molecular dynamic simulation. Computational Materials Science. 170 (2019) 109162.
[59] C. Lu, T. N. Yang, K. Jin, G. Velisa, P. Xiu, Q. Peng, F. Gao, Y. Zhang, H. Bei, W. J. Weber, and L. Wang. Irradiation effects of medium-entropy alloy NiCoCr with and without pre-indentation. Journal of Nuclear Materials. 524 (2019) 60-66.
[60] Y. P. Wang, J. G. Xu, H. Y. Song, J. X. Sun, and Y. X. Zhou. Effect of surface crack on nanoimprint process of Al thin film. Physica B: Condensed Matter. 434 (2014) 194-199.
[61] C. D. Wu, T. H. Fang, P. H. Sung, and Q. C. Hsu. Critical size, recovery, and mechanical property of nanoimprinted Ni–Al alloys investigation using molecular dynamics simulation. Computational Materials Science. 53 (2012) 321-328.
[62] K. Tada, S. Horimoto, Y. Kimoto, M. Yasuda, H. Kawata, and Y. Hirai. Molecular dynamics study on compressive strength of monocrystalline, nanocrystalline and amorphous Si mold for nanoimprint lithography. Microelectronic Engineering. 87 (2010) 1816-1820.
[63] T. H. Fang, C. D. Wu, W. J. Chang, and S. S. Chi. Effect of thermal annealing on nanoimprinted Cu–Ni alloys using molecular dynamics simulation. Applied Surface Science. 255 (2009) 6043-6047.
[64] J. G. Kirkwood. The statistical mechanical theory of irreversible processes in solutions of flexible macromolecules. Visco‐elastic behavior. Recueil des Travaux Chimiques des Pays‐Bas. 68 (1949) 649-660.
[65] J. H. Irving, and J. G. Kirkwood. The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. The Journal of Chemical Physics. 18 (1950) 817-829.
[66] 洪崇瑋,二維石墨炔機械與熱傳導特性之研究, 國立高雄科技大學碩士論文, (2019)。[67] J. Tersoff. New empirical approach for the structure and energy of covalent systems. Physical Review B. 37 (1988) 6991.
[68] S. J. Stuart, A. B. Tutein, and J. A. Harrison. A reactive potential for hydrocarbons with intermolecular interactions. The Journal of Chemical Physics. 112 (2000) 6472-6486.
[69] D. W. Brenner. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Physical Review B. 42 (1990) 9458.
[70] J. M. Haile, I. Johnston, A. J. Mallinckrodt, and S. McKay. Molecular dynamics simulation: elementary methods. Computers in Physics. 7 (1993) 625.
[71] D. Frenkel, B. Smit, J. Tobochnik, S. R. McKay, and W. Christian. Understanding molecular simulation. Computers in Physics. 11 (1997) 351-354.
[72] C. W. Gear. Numerical initial value problems in ordinary differential equations. Prentice-Hall series in automatic computation. Englewood Cliffs, NJ. (1971).
[73] D. Fincham, and D. M. Heyes. Integration algorithms in molecular dynamics. CCP5 Quarterly. 6 (1982) 4-10.
[74] 蘇祉愷,分子動力學模擬非晶態鎳鋁合金之壓印與切削加工特性,國立高雄應用科技大學碩士論文,(2015)。[75] M. P. Allen, and D. J. Tildesley. Computer simulation of liquids. Oxford university press. (2017).
[76] C. Qiu, P. Zhu, F. Fang, D. Yuan, and X. Shen. Study of nanoindentation behavior of amorphous alloy using molecular dynamics. Applied Surface Science. 305 (2014) 101-110.
[77] L. Xie, P. Brault, A. L. Thomann, and J. M. Bauchire. AlCoCrCuFeNi high entropy alloy cluster growth and annealing on silicon: A classical molecular dynamics simulation study. Applied Surface Science. 285 (2013) 810-816.
[78] S. Huang, W. Li, S. Lu, F. Tian, J. Shen, E. Holmström, and L. Vitos. Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy. Scripta Materialia. 108 (2015) 44-47.
[79] P. H. Sung, and T. C. Chen. Material properties of Zr–Cu–Ni–Al thin films as diffusion barrier layer. Crystals. 10 (2020) 540.
[80] C. H. Wang, K. C. Chao, T. H. Fang, I. Stachiv, and S. F. Hsieh. Investigations of the mechanical properties of nanoimprinted amorphous Ni–Zr alloys utilizing the molecular dynamics simulation. Journal of Alloys and Compounds. 659 (2016) 224-231.
[81] F. Li, X. J. Liu, and Z. P. Lu. Atomic structural evolution during glass formation of a Cu–Zr binary metallic glass. Computational Materials Science. 85 (2014) 147-153.
[82] C. Qiu, P. Zhu, F. Fang, D. Yuan, and X. Shen. Study of nanoindentation behavior of amorphous alloy using molecular dynamics. Applied Surface Science. 305 (2014) 101-110.
[83] B. Zhang, and W. J. Meng. Effects of punch geometry and grain size in micron scale compression molding of copper. Materials & Design. 206 (2021) 109807.
[84] M. Papanikolaou, and K. Salonitis. Grain size effects on nanocutting behaviour modelling based on molecular dynamics simulations. Applied Surface Science. 540 (2021) 148291.
[85] D. Q. Doan, T. H. Fang, and T. H. Chen. Machining mechanism and deformation behavior of high-entropy alloy under elliptical vibration cutting. Intermetallics. 131 (2021) 107079.
[86] S. Goel, N. H. Faisal, X. Luo, J. Yan, and A. Agrawal. Nanoindentation of polysilicon and single crystal silicon: Molecular dynamics simulation and experimental validation. Journal of Physics D: Applied Physics. 47 (2014) 275304.
[87] Q. C. Hsu, C. D. Wu, and T. H. Fang. Deformation mechanism and punch taper effects on nanoimprint process by molecular dynamics. Japanese Journal of Applied Physics. 43 (2004) 7665.
[88] C. D. Wu, T. H. Fang, and J. F. Lin. Effects of mold geometry and taper angles on the filling mechanism of a nanoimprinted polymer using molecular dynamics. Applied Surface Science. 316 (2014) 292-300.
[89] C. D. Wu, T. H. Fang, and C. Y. Chan. A molecular dynamics simulation of the mechanical characteristics of a C60-filled carbon nanotube under nanoindentation using various carbon nanotube tips. Carbon. 49 (2011) 2053-2061.
[90] C. H. Wang, K. C. Chao, T. H. Fang, I. Stachiv, and S. F. Hsieh. Investigations of the mechanical properties of nanoimprinted amorphous Ni–Zr alloys utilizing the molecular dynamics simulation. Journal of Alloys and Compounds. 659 (2016) 224-231.
[91] S. Mishra, M. Meraj, and S. Pal. Atomistic simulation study of influence of Al2O3–Al interface on dislocation interaction and prismatic loop formation during nano-indentation on Al2O3-coated aluminum. Journal of Molecular Modeling. 24 (2018) 1-13.
[92] J. Shi, Y. Wang, and X. Yang. Nano-scale machining of polycrystalline coppers-effects of grain size and machining parameters. Nanoscale Research Letters. 8 (2013) 1-18.
[93] B. Uzer, S. Picak, J. Liu, T. Jozaghi, D. Canadinc, I. Karaman, Y. I. Chumlyakov, and I. Kireeva. On the mechanical response and microstructure evolution of NiCoCr single crystalline medium entropy alloys. Materials Research Letters. 6 (2018) 442-449.
[94] J. Miao, C. E. Slone, T. M. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G. M. Pharr, and M. J. Mills. The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy. Acta Materialia. 132 (2017) 35-48.
[95] C. Lu, T. N. Yang, K. Jin, G. Velisa, P. Xiu, Q. Peng, F. Gao, Y. Zhang, H. Bei, W. J. Weber, and L. Wang. Irradiation effects of medium-entropy alloy NiCoCr with and without pre-indentation. Journal of Nuclear Materials. 524 (2019) 60-66.
[96] W. Sha, X. Wu, and K. G. Keong. Molecular dynamics (MD) simulation of the diamond pyramid structure in electroless copper deposits. Electroless Copper and Nickel-Phosphorus Plating: Processing, Characterisation and Modelling. Cambridge, United Kingdom. (2011).
[97] 黃家煒,奈米層狀石墨烯/銅複合材料之機械特性研究,國立高雄科技大學碩士論文,(2020)。